

Details of a Malicious Code Analysis Course

Ann Sobel
sobelae@miamioh.edu

Michael Gentile

gentilm5@miamioh.edu

Miami University
Oxford, OH 45056

Abstract – Miami University has committed to the goal of increasing
cybersecurity education. To this end, the department of Computer Science and
Software Engineering is considering an offering of a cybersecurity minor which
covers the accreditation criteria of a National Security Agency CAE cyber
operations fundamentals focus area. A trial offering of a new course satisfying
the mandatory topic of reverse engineering is outlined here. The main
component of the learning objectives of this new course is the hands-on
experience of using disassembly tools to identify malicious code. Future work
includes the assessment of this laboratory experience both in the tools used and
their effectiveness when performing static analysis of assembly code to identify
potential nefarious acts.

Keywords

Undergraduate Education, Cybersecurity, Laboratory Exercises, Accreditation

The Colloquium for Information System Security Education (CISSE)
June, 2019

1

1. INTRODUCTION

Miami University intends to increase its cybersecurity learning
opportunities. As with most computer science departments, we have
experienced an explosion in the number of undergraduate majors which has led
to a constant need for additional staff. An increase in our cybersecurity course
offerings was a clear conflict with our staffing considerations so we took the
approach of minimizing the changes necessary to not only increase our course
offerings but to offer a cybersecurity program that matched the accreditation
criteria of the National Security Agency CAE cyber operations fundamentals
focus area [1]. We were able to minimally change the existing core courses of
architecture, operating systems, and discrete mathematics so that a modification
of our existing network security elective course and only two new courses were
need to define the minor. One of the new courses on cellular and mobile
technologies will be offered by our computer engineering department and the
other course on reverse engineering that will be offered by our department is
discussed here.

2. MALICIOUS CODE ANALYSIS COURSE

This course was created to satisfy the mandatory requirements of reverse
engineering with the addition of the required legal & ethical issues. All aspects
of this course were patterned off of the CAE cyber operations fundamentals.
The objectives and rationales come from the description of the KU reverse
engineering.

A critical skill within the cybersecurity field is understanding
software that is of unknown origin or software that has source code that
is unavailable to assess whether malicious code exists. Students will be
able to use tools to perform mostly static and limited dynamic analysis
of software in an attempt to understand its functionality, both expected
and abnormal.

The Colloquium for Information System Security Education (CISSE)
June, 2019

2

The major learning objectives/outcomes that must be defined for every
course at Miami University and which are used to assess the teaching
effectiveness of each course offering follow. Students will be able to…

1. Explain basic static and dynamic malware analysis.
2. Analyze assembly code of software and demonstrate the ability to trace

assembly code to probable language-specific code.
3. Use existing tools such as IDAPro and OllyDbg to analyze object code.
4. Demonstrate the ability to identify malicious errors.
5. Explain basic classification of known malware strategies.

The text book chosen, Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software [2], was a factor in the course topics chosen and
when those topics were delivered. While the text book contains a practical
approach to malware code analysis, it assumes the reader has a rather extensive
background in Windows file structure, compiling, programming language
theory, assembly language instructions and executable file formats. This
caused a number of weeks to be spent on programming language grammars,
lexical analysis, generation of assembly code, packaging of that code in an
executable, and the expected format of an executable given that our audience
was a CS major undergraduate student.

3. TOOLS IN THE LABORATORY

3.1 Student Laboratory Basics

Initial consideration of the course laboratory had us weigh whether

we wanted to use Windows, Linux, or have the students use their own
personal computers. The later was discounted given we didn’t want to
corrupt their own environments since they needed them for other course
work. Given the textbook’s focus on Windows, we chose that direction.
Ultimately, our virtual machine was isolated from the internet, thereby
isolating potential harm, and every student was granted administrator
access. A major downside to this approach was that anyone at any time
could render the environment unusable.

The Colloquium for Information System Security Education (CISSE)
June, 2019

3

3.2 Virtual Machine Setup

The main goals of the analysis environment are that the system should be
contained, usable and independent. It shall be focused on a single analysis
machine which is both the infected machine and the analysis machine. The
system should be contained such that the malicious code should not have the
ability to spread or scan through the network. The system should possess a
graphical user interface to users in such a manner that multiple users can work
on the system at once while doing non-computationally expensive tasks.
Finally, the system needs to be independent of the environment around it such
that a failure of this system caused by the malicious code should not cause other
systems within the cluster to experience issues.

The ways in which these goals can be achieved is multi-faceted and depends
strongly on the system architecture where these ideas are being presented.
Although, there exists one solution that achieves all of these goals and has very
subtle drawbacks to an educational environment: native virtualization. Native
virtualization through tools such as VMWare or VirtualBox allow for the
creation of incredibly isolated systems that achieve all the usability of a native
machine with a minor performance fee. These machines can be isolated on the
network such that only a specific port can be exposed to the outside world and
small long-term storage drives are the only thing exposed to the environment.
The system’s state can easily be stored in a file and restored after mistakes were
made with the malicious code. Overall, this architecture will be the best for
most educational purposes

The largest issue with this architectural scheme is that some modern
malware does not even run on machines that it believes to be virtualized. It has
become incredibly easy to detect virtualized hardware. Malware producers are
not naive to the notion that researchers do not want to run their code on native
machines. Therefore, some more sophisticated malware cannot be analyzed in
these environments. Although, most malware that would be analyzed in a single
semester course would not venture into this level of complexity and could be
easy to avoid as an instructor with some foresight.

A more difficult decision to make would be the operating system to choose
for the system. Providing students with patched versions of the Windows

The Colloquium for Information System Security Education (CISSE)
June, 2019

4

operating system can severely limit the effectiveness of the malware itself and
truly can stop the malware from doing the things that it normally does.
Obviously, this can severely limit the dynamic analysis of the malware. Further,
most of the malware that you will find for textbooks will be designed for
Windows XP, Vista or 7. This does not offer a large difference to anything but
the case of Windows XP. Windows XP is no longer supported officially by
Microsoft. Therefore, most malware can run (relatively) unobstructed in this
ecosystem. This operating system choice bars the case of massive malware
breaches such as WannaCry. In all cases, these systems will all work. With a
strong system of isolation there should be no worry of running an unpatched
version of any of these systems.

Access to the system both by the users and to access files from the web are
both necessary functions of usability for the system. The recommended course
of action to allow users to access the system would be to utilize remote desktop.
Remote desktop allows for the user to access the system completely away from
it and allow concurrent connections. For file system access, it is not
recommended to expose more of the drive to the host environment than is
necessary. Therefore, using a network file system would be the recommended
system. This should be configured such that there is a web interface that is
accessible via the intranet and is whitelisted for upload and download out of the
containing environment.

3.3 Tools and Their Expected Usage

The only tools that the student should need on their personal computer
would be a remote desktop client. The tools that should be taught in this course
should be IDA Pro and OllyDBG. Other tools that would be useful would be
PEiD, Procmon, VirusTotal and Wireshark. These other tools are typically
rather simple and do not need taught. Although, it would be sufficient for a
cursory review in class to go over their simple purpose.

 The biggest tool in reverse engineering in general would commonly be
IDA Pro. IDA Pro exists primarily as a static analysis tool to analyze
executables in various different formats to gain knowledge about what they are

The Colloquium for Information System Security Education (CISSE)
June, 2019

5

doing and what they are accessing. IDA has the ability to also do dynamic
analysis through various additional installations. Within the static analysis
realm, IDA does a large amount of the leg work by breaking down the program
into different functions and decoding the executable into its imports, data and
machine code. It then allows a graphical interpretation of the machine code
such that it can be illustrated how the software works and how it is tied
together. The tool allows for the reverser to allow them to comment on various
locations within the code, replace variable locations with names and view
strings of the program in plain text. This allows the program to become closer
to human readable and understandable, even with a somewhat minimal
understanding of assembly. The tool can be used as a sort of multitool of static
analysis. It can also do things like list imported functions, exported functions,
view loaded libraries, show all the names used in the files and get a logical
view of code structures.

 IDA Pro should likely be the largest feature tool taught within the
course. It reduces the time spent on other items dramatically if the tool is used
properly. The largest cons of the use of this tool is that it has a steep learning
curve and it can be very easy to become lost in the details. The tool should be
taught with very simple examples in class and students should have adequate
time with simple problems in the tool before being exposed to more difficult,
realistic malicious code.

 OllyDbg is the IDA Pro of the dynamic analysis realm. OllyDbg gives
the standard tools one would expect from any modern debugger in the realm of
computer science. It allows for step through, step over functions and sometimes
reverts. It gives a view of different variables and allows an in depth view of the
program stack. It would be the ideal way of stepping through a program and
trying to elicit expected behavior such that you can monitor exactly what it is
doing and how to achieve it. It further allows the modification of this source
code so that other operations can be explored. This tool should be introduced
within the course and should be taught at a similar time IDA has been
introduced. It allows students to do proofs of concept on their work and see if

The Colloquium for Information System Security Education (CISSE)
June, 2019

6

they can truly predict the way that the program is going to act from static
analysis to dynamic analysis.

 WireShark, simply, is a tool that is used to monitor networks. Most
malware now contacts some networking imports that allow the malware to tell
the writers or infectors of the malware that a machine has been infected and to
begin doing what they want with the machine, whether it be remote execution
or some sort of spyware. It would be useful to know what that malicious code is
telling the network or seeing if it is trying to branch out. Therefore, we would
use a tool like WireShark to monitor these things. WireShark can be setup
before the malware is executed. When the malware is executed, WireShark
captures the packets that have been sent and received and allows the analyst to
view what is occurring in the network. This can give great hints as to what the
malware is trying to accomplish with very little effort.

 PEiD, VirusTotal and Procmon are two very simple tools. PEiD allows
for packed malware to be detected and then decodes it into its unpacked state.
This software is not perfect, although it is a very good step before manually
attempting to unpack malware. Procmon, on the other hand, is another dynamic
analysis tool that allows for the analyst to view all the processes that are created
and killed during the execution of the code currently under review. This
becomes particularly useful for programs that alter the behavior of Windows.
Finally, VirusTotal is more of a real-world tool where a program has been
already identified as malicious and matches known virus signatures. It checks
against a combination of various anti-virus datasets. With these datasets, it
indicates whether the file indicated is known to be malicious and gives a name
and type to this malware. This gives a major head start to the reverse
engineering process. It’s an obvious first step when dealing with an unknown
file.

4. LESSONS LEARNED

It can’t be emphasized enough to start really early performing the
cybersecurity laboratory setup. We needed IT administration permission to

The Colloquium for Information System Security Education (CISSE)
June, 2019

7

establish the virtual machine environment, and have the installation of the
various analysis tools. There were instances when tools didn’t work as
advertised sometimes due to the version of the operating system they required;
a clear problem when your IT support policy is to install the latest and greatest.

Those in academia have certainly experienced student reluctance to embrace
new operating system commands, new forms of communication, and file
transportation so these activities needed to be documented and frequently
revisited. Our biggest issue was that the virtual machine was not part of our
usual domain and access required students to provide namespace identification
when logging in. File transfers required the use of Netdisk which led to domain
and two factor authentication issues which weren’t insurmountable but they
weren’t natural either.

Obtaining and using infected files was a headache. We had to resort to the
very methods that someone would use to hide their corrupted files from the
unsuspecting public. We most often used compression for file packaging to
obfuscate infected files from virus detection software on a PC but it wasn’t a
given that we would be successful which lead to hiccups in material delivery.
Even what might appear as simple DLL linkage added to our headaches.

Several times during this term we have pondered whether a Windows
environment was the best choice. Using this environment limited our compiler
choice and which system string commands were readily available, such as grep,
sed and awk. Having a powerful set of string manipulation and identification
tools highlights the essence of what disassembly analysis attempts to do. The
course began with an exercise meant to motivate the underlying problem for
which reverse engineering is necessary; namely, the identification of substrings
in flu DNA for possible sources of mutations for predicting possible flu strains
in the upcoming year. The solution consisted of only Linux-based commands
and on a single command line. On the flip side, IDAPro may have a Linux
version but it doesn’t come close to the functionality of the Windows version.
Lastly, if the target of the laboratories are to simulate work-related experiences,
then one shouldn’t consider using Linux.

The Colloquium for Information System Security Education (CISSE)
June, 2019

8

Malware analysis itself takes a lot of prior knowledge in order to thoroughly
understand what is happening while using these tools. In academia, it is not a
common a occurrence for platform specific operating system intricacies to be
taught to the degree in which would be sufficient for this course. Things like
the registry, tasks and file structures are all things that need a large amount of
review before the course can actually start to focus on malware. It must be a
large consideration of what the student has been taught in their operating
system course before the student can adequately understand what is happening.
Many of these topics may need revisited or expanded upon for students to truly
understand the course material.

Finally, the nature of malware makes it incredibly difficult to pinpoint
exactly how malware will interact with different versions of the system. Off of
every operating system patch there exists a chance that there will not be
consistency among how you believe the malware to behave (when writing the
assignment) and how the students will experience the behavior of the malware.
Therefore, it is important to keep the system constant and that the assignments
are checked for accuracy close to their assignment time. This will help to
ensure consistency among malware behavior as well as assignment relevance.

5. SUMMARY

Miami University has begun an effort to increase cybersecurity education.
The Computer Science and Software Engineering department has allowed the
offering of reverse engineering course that covers the accreditation
requirements of the National Security Agency CAE cyber operations
fundamentals focus area [1]. It is the author’s desire to receive approval to
create a cybersecurity minor that can be accredited under this program. This
particular course, Malicious Code Analysis, focuses on teaching reverse
engineering using mostly hands on laboratory exercises. The laboratory setup,
tool selection, and tool usage were detailed here so that other educators who
wish to adopt such a course might benefit from our experience.

The Colloquium for Information System Security Education (CISSE)
June, 2019

9

The Colloquium for Information System Security Education (CISSE)
June, 2019

10

REFERENCES

[1] National Security Agency (NSA) Centers for Academic Excellence (CAE),
"Academic Requirements for Designation as a CAE in Cyber Operations
Fundamental", Online at https://www.nsa.gov/Resources/Students-
Educators/centers-academic-excellence/cae-co-fundamental/requirements/

[2] Sikorski, Michael and Andrew Honig, Practical Malware Analysis: The
Hands-On Guide to Dissecting Malicious Software, No Starch Press, 2012,
ISBN:978-1-59327-290-6.

https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/

