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In recent years, there have been numerous developments in quantum 
computation. These developments have brought into question, how quantum 
computers could affect security have risen. For instance, Shor’s algorithm is 
believed to be able to break certain encryptions faster on a perfect quantum 
computer faster than on, what is known as, classical computers. In a few years or 
decades, there could be significant developments made that allow for quantum 
computers to perform Shor’s Algorithm. As quantum computers exist now, the 
implementation of the algorithm is known to be difficult as the computes are very 
basic. Attempts to create quantum circuits that can compute Shor’s Algorithms aid 
in the understanding of the algorithm. 
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1. INTRODUCTION

The most import basis in cyber security is encryption. It provides privacy,
anonymity, authorization, authentication, integrity, and assurance. Some of the 
security algorithms used today are results of many before them that were broken. 
Examples of this are seen in symmetric cryptography with algorithms like DES and 
Triple DES. Both precede the symmetric cryptographic algorithm, AES and both 
were broken, or were insecure. RSA, an asymmetric cryptosystem, has withstood 
attempts to break it algorithm; however, Elliptic curve cryptography has been 
becoming more popular as the sizes of its keys are not required to be as big a RSAs. 
That being said, with the innovation of quantum technology, there is the chance 
that asymmetric cryptosystems, like RSA and ECC, could potentially become 
insecure in the future. This idea stems from an algorithm created by, MIT Professor, 
Peter Shor, in which he showed that a quantum computer could potentially solve 
RSA Keys and ECC Keys in polynomial time, which is considered to be much 
faster than what can be done on a classical computer. This has become apparent to 
departments of government like the NIST (National Institute of Standards and 
Technology) expressed concern in the rise of quantum technology and are in the 
process of finding a potential replacement for the RSA cryptosystem, in a Post 
Quantum World [5]. This excitement over quantum computing, leads one to take 
into account how and why quantum computers can do what classical computers 
cannot. To understanding the problem, the goal of this paper is to comprehend how 
Shor’s Algorithm works, specifically with RSA, and to see if the current state of 
quantum computers is able to implement the algorithm. 

2. LITERATURE REVIEW

To begin, a basic understanding of RSA cryptosystem would be helpful in the
pursuit to understand Shor’s algorithm. From the book, Understanding 
Cryptography: A Textbook for Students and Practitioners, the equation for the 
cryptosystem goes as followed: 

m = message in plain text 

c = ciphertext after encrypting message 
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Encryption: 𝑐 ≡ 𝑚$	(mod	𝑛) 

Decryption: 𝑐) ≡ (𝑚$)) ≡ 𝑚	(mod	𝑛) 

While d is only known to the recipient, an attacker could intercept the encrypted 
message and attempt to decrypt it by performing a brute force attack; however, 
performing such an attack is not practical as real RSA keys are significantly large 
and can range in size of 512 to 1024 bits, and sometime larger. For this reason, 
mathematical attacks have been conceived to calculate the decryption key more 
efficiently than brute force attacks [6]. In a Mathematical Attack, instead of 
guessing the decryption key d, the attacker attempts to factor the prime the values 
of n, which are known as p and q [6]. If p and q are calculated, the attacker can 
then figure Φ(n) as, Φ(n) = (p-1)( q-1), and thus calculate the decryption key, d, as 
𝑑	×	𝑒 ≡ 1	mod	𝑛. However, again arises the problem: because n can be a very 
larger number determining p and q would take a very long time to calculate [4]. 
The most asymptotically efficient classical algorithm that can find p and q is the 
number theoretic sieve, which factors an integer n in time O(exp[(log(n))1/3 
(log(log(n)))2/3]) [3]. Shor’s algorithm is known to be theoretically faster than this 
as it is not simply factoring n. Below it is the steps of Shor’s Algorithm [3]: 

Step 1: 

Choose a number 1 < a < n such that is relatively prime with n, meaning gcd(a, 
n) = 1. If the gcd(a, n) does not equal 1 then k is a factor of n and the algorithm
ends; otherwise, proceed to Step 2 [3].

Step 2: 

With the value a, determine the period, r, of the equation a mod n such that 
𝑎2𝑚𝑜𝑑	𝑛 ≡ 1 [3]. 

Step 3: 

If r is found such that 𝑎2𝑚𝑜𝑑	𝑛 ≡ 1 is true but is odd, then repeat Step 1. If r 
is even, proceed to Step 3[3]. 

Step 4: 

Since 𝑎2𝑚𝑜𝑑	𝑛 ≡ 1 is true, then 𝑎2 − 1 ≡ 0	mod	𝑛 is also true, which  means 
𝑎2 − 1 is a multiple of n. Thus there must exist some value integer k, such that 
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𝑎2 − 1 = 𝑘𝑛 . Since r is even, the above equation can be rewritten as, (k is 
unnecessary for the rest of the equation) [3]. 

(𝑎2/9 − 1)(𝑎2/9 + 1) = 𝑝𝑞 

Step 5: 

Finally, if neither (𝑎2/9 − 1) nor (𝑎2/9 + 1) are congruent to 0 mod n, then 
𝑛	 = ((𝑎2/9 − 1)/𝑝) ∗ ((𝑎2/9 + 1)/𝑞), and it can be said that, [3]. 

p = gcd(ar/2- 1, n)

q = gcd(ar/2 + 1, n)

Thus p and q have been determined. The most significant part of Shor’s 
algorithm is Step 2 as it is the hardest part, for classical computers to do especially 
if n is a large number [3]. For this reason, Shor’s uses a quantum computer to 
calculate the period of a mod n. Quantum computers have a property known as 
superposition in which a quantum bit can be in the state of a combination of 1 and 
0. When the bits a measured the bit chose a state of either 1 or 0. Using this property
Shor’s algorithm is able to factor an integer n that takes asymptotically O(log(n)2 

log(log(n)) log(log(log(n)))) steps which is polynomial time in the number of digits
O(log(n)) of n [7]. Essentially, using the property of superposition would allow to
multiple testing 𝑎2mod	𝑛 ≡ 1. The quantum portion of Shor’s algorithm goes as
follows: create two quantum registers and set their sizes to 𝑛9 < 𝑞 < 2𝑛9, and n -
1 respectively; put register 1 in the uniform superposition of states representing
numbers a (mod q) and load register 2 with all zeros; then compute 𝑎2𝑚𝑜𝑑	𝑛 ≡ 1
in the second register; perform an inverse Quantum Fourier Transform on the first
register; lastly, measure the first register [7][3]. The algorithm should give the
period of a mod n, which could then be used to find d. The heart of Shor’s algorithm
is the Quantum Fourier Transform, as it should use resonances to amplify the basis
states associated with the correct period and the incorrect answers destructively
interfere, which suppress their amplitudes, increasing the speed of algorithm to
polynomial time [7].

3. RESEARCH METHODS
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In order to begin to determine how Shor’s algorithm will affect RSA encryption, 
it would be beneficial to test current circuits that implement Shor’s Algorithm on 
a quantum computer. For this testing process the web-based user interface, 
Jupyterlab, running Python Version 3.7.0, in conjunction with IBM’s Qiskit API, 
will be used to create and simulate quantum circuits running on a quantum 
computer. These programs will be running on a 11-inch MacBook Air, with 8 
Gigabytes of memory, running OS X El Capitan 10.11.6. This research is to 
essentially examine the state of current state of quantum computing as well as the 
implementation of the algorithm.  

4. RESEARCH

To test Shor’s Algorithm, experiments were conducted by attempting to
implement the algorithm on a quantum computer. To do this, the circuit would be 
broken up into four parts based on Shor’s algorithm. First part is superposition, 
which is easy to achieve since the Hadamard gates do that already; the second part 
is modular exponentiation, which is difficult to achieve considering that this can 
only be achieved using quantum logic gate; third step is to implement the Inverse 
Quantum Fourier Transform (QTF), which already exist, and, for the purposes of 
this experiment, will be gathered from the IBM Q Experience community GitHub 
user, delapuente; lastly, the measurement which is included in the IBM quantum 
API. All the parts of the circuit are available except for the modular exponentiation 
part. In Experimental realization of Shor’s quantum factoring algorithm using 
nuclear magnetic resonance, a circuit was created to find the period of 72mod	15. 
The circuit yields the correct results, outputting 4 and 0. The value 0 can be ignored 
since 7Bmod	15 will always be 1 and is a side effect of the Inverse QFT. The other 
result 4, is the period of 72mod	15. It is the only circuit that was researched so far, 
that is able to find the period. Figure 1 is a recreation of the circuit in which n = 15 
and a = 7. The design of the circuit is different from Shor’s Algorithm, as all the 
operations are done in one register instead of two.  
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Figure 1: Circuit designed to calculate the period of 7C𝑚𝑜𝑑	15 

Figure 2: Results from circuit of Figure 1. Yield 0 and 4, which when calculated is 
7D𝑚𝑜𝑑	15	 ≡ 1. Therefore 4 is the period which yields the results 𝑔𝑐𝑑(79 − 1, 15) 	= 	3 

and 𝑔𝑐𝑑(79 + 1, 15) 	= 	5 which are the prime factors of 15. 

Using the circuit from Figure 1 as a guide, a new circuit will be designed. 
Replacing the part of the circuit that is used for modular exponentiation should 
yield a different result. In Figure 1, it would appear that the control qubits of the 
controlled not gates (CNOTs) are in the same position as the results of the circuit 
which may have a correlation. To test this, in the second attempted period finding 
circuit, the control qubits of CNOTs should represent the desired period in the 
circuit. The circuit is designed to find the period of 72mod	55. For the equation 
72mod	55 the expected period is 20, therefore the control qubits will be in Register 
bit position 2 and 4, which represent the values 4 and 16 respectfully. The number 
of the initial Hadamard gate and size of the QFT were determined by the number 
of bits in 55, which is 6. 
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Figure 3: Quantum circuit designed to find period of 72mod	55 

Figure 4: Results of Quantum circuit designed to find period of 72mod	55 

The results of the circuit in Figure 3 show the expected result, 20 or 00101, has 
a high probability of appearing on a quantum computer; however, it also shows 
unexpected results, 4 (0010) and 16 (00001), with close to or equal probability. It 
may be that because 4 and 16 equal 20, which is the desired result, 4 and 16 are 
equally likely as 20. To achieve just the desired result, the next circuit will be a 
modification of the circuit in Figure 3. Two more gates will be added to the circuit 
to attempt to remove 4 and 16 from appearing. The logic behind the placement of 
the gates is that if it is assumed that there is some quantum entanglement between 
superposition of the control qubits and their respective target qubits then maybe 
clearing the target qubits when either 4 or 16 occur individually would reduce their 
likelihood of appearing.  
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Figure 5: Modified version of the circuit in Figure 3. Added one CNOT on qubit 7 with 
target qubit qubit 6. Added a Toffoli Gate to Target qubit 6 with control qubits, 2 and 4. 

Figure 6: The results of the circuit in Figure 5 have found the desired result 

The circuit yields the correct result. To examine whether this logic is exclusive 
to this circuit, the logical placement of the gates will be applied to a different circuit 
attempting to find a different period. The circuit in Figure 5 will be modified again 
to find the period of equation 52mod	33 with expected period of 10. 

Figure 7: Shows the circuit design to find the period of 52mod	33 
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Figure 8: Results from circuit designed to find the period of 52mod	33 

The results from the second modified circuit, shown in Figure 7, show that the 
expected period, 10, was achieved. Ignoring 0, 10 has the second highest 
probability of appearing on a classical computer. This experiment shows that when 
considering entanglement, results from the quantum circuit can be manipulated to 
the desired results. 

5. CONCLUSION

To conclude the results of the experiments, although not highly significant,
represents an approach on how to potentially realize the modular exponentiation of 
Shor’s period finding function. For this research quantum entanglement may be the 
cause of the logic of the circuit working. This highlights the fact that quantum 
registers are not like the registers on classical computers. Quantum Phenomena like 
entanglement and superposition play a role in the behavior of the circuits, meaning 
that a classic approach to logically understanding quantum circuit may not be the 
correct approach. The approach of simply storing the results on the second half of 
the register may not be the right approach for Shor’s algorithm. Entanglement of 
the qubits should be taken into consideration when trying to reach Shor’s 
Algorithm. Lastly, further research can be done to find alternate circuits that could 
calculate the period. As the quantum technology increases in efficiency, 
improvements on the circuits could yield better results and process. 
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