
Introducing Secure Design by Scripting in
an Undergraduate Microcontroller Based

Design Course

Kalyan Mondal
mondal@fdu.edu

Angela Elias-Medina

aaelimed@student.fdu.edu

Fairleigh Dickinson University
1000 River Road, Teaneck, NJ 07666

Abstract - This paper discusses a systematic approach to revising a second

undergraduate course on microprocessor system design to improve student
learning outcomes by introducing scripting-based design with a security
mindset. The current course is based upon using the Dragon 12-Plus
development system which requires using compiled C code and does not offer
any on-board security features. The updated course has the intended outcomes
of gaining design and technical skills on multiple microcontroller-based
design platforms and introduce “security mind-set” for networked systems. A
Project Based Learning (PBL) approach is also introduced, and the focus of
the course is on hands-on activities where the students work on multiple design
projects using C and MicroPython. The course hardware platform of Dragon
12-Plus is augmented with a small form factor pyboard, which is used to
acquire sensor data and transmit securely for simple data analytics. Three new
laboratories, including one on data security using MicroPython are introduced.
Necessary changes to undergraduate engineering programming course
sequence are outlined. Additionally, mapping of these new labs to CAE-CD
KUs and the NICE Framework Specialty Areas is included.

Keywords

Microcontrollers, data security, project based learning, MicroPython

The Colloquium for Information System Security Education (CISSE)
June, 2019

2

1. INTRODUCTION

The use of microcontrollers in industrial and net-centric electronic devices
has become ubiquitous over the past several years. Electrical and computer
engineers need to have an understanding of microcontroller hardware and
software systems, their networking abilities, and be able to develop systems
with reduced vulnerabilities. Since many such designs end up getting
connected to the Internet, the students must develop a “security mind-set” to
avoid these smart devices getting hacked. The students should also be able to
utilize the secure data transmission, aggregation, and analysis capabilities to
design more useful applications.

At our college, an undergraduate microprocessor based design course is
presented in two-semesters with the first semester course (EENG2287
Microprocessor System Design I) focusing on microprocessor architecture and
its programming using the associated assembly language. The second course,
EENG3288 Microprocessor System Design II, deals with microcontroller
based system design [1] using a high-level language, such as C. Students in the
second course learn about a relatively complex 16-bit microcontroller (NXP
HCS12 in our case) architecture, a development system (Dragon 12-Plus in our
case), and an Integrated Development Environment (IDE) (CodeWarrior in our
case) that allows I/O pin level programming in C [2-3]. Typically, students
learn how to program parallel ports to control display systems, use real-time
interrupts to control external I/O devices, use timers to generate arbitrary
waveforms and measure them, use A/D converters to acquire sensor (e.g.,
temperature, pressure, etc.) data, and use PWM to control DC motors. This is
atypical of many colleges, where different microcontrollers and IDEs are used
for similar student learning outcomes.

In real world, the engineering graduates may have to use a different
microcontroller and its development system than what they used in their
colleges and have to spend a considerable amount of time self-learning system
interfacing and programming requirements. Some authors [4] have proposed
learning multiple development systems with pluggable microcontrollers or

http://evbplus.com/dragon12_plus2_9s12_hcs12/dragon12_plus2_9s12_hcs12.html
https://www.nxp.com/support/developer-resources/software-development-tools/codewarrior-development-tools/downloads:CW_DOWNLOADS

The Colloquium for Information System Security Education (CISSE)
June, 2019

3

even a combination of reconfigurable platform (e.g. CPLD/FPGA) and a
microcontroller in the undergraduate program.

For the last several years, microcontroller-based embedded systems are
being designed to be networkable and get connected to the Internet as part of
the deployment in smart devices. Although microcontrollers like HCS12 are
networkable using Serial Communication Interface (SCI) and Controller Area
Network (CAN) interfaces built-in the HCS12 chip, the Dragon 12-Plus
development board does not offer the Internet connectivity. The popular
Arduino platform with inexpensive WiFi-enabled ESP8266 microcontroller
has provided a simple solution for Internet connectivity and is liked equally by
the hobbyists and self-learners. Both require C language programming.

These Internet-ready devices, also known as Internet of Things (IoT), may
have vulnerabilities that can be exploited by malicious intruders to breach
privacy and/or cause serious damage to the owners of such devices. Many
newer microcontroller devices, e.g., NXP Kinetis K8x, provide on-chip cyclic
redundancy check (CRC), random number generation (RNG), and symmetric
cryptographic encryption/decryption capabilities whereby some of these risks
can be minimized. However, these also are C based complex devices.

Another important shift in paradigm has revolutionized the development of
IoTs. Single-board credit-card sized Raspberry Pi or similar single-board
computers that run a full blown operating system like Linux and WiFi
capability has made IoT development a lot easier. This is because of simpler
scripting based software that makes an app development a breeze. One has to
keep in mind that running a full operating system (OS) does not come without
some security risks and overheads. The OS and associated libraries need to be
patched, and these single board computers have a much larger attack surface
than a simple microcontroller.

In this paper, we outline the changes to the EENG3288 course at our college
by making judicial changes to the curriculum, introducing new laboratory
equipment and developing new labs to circumvent several issues discussed
above. We also discuss how the Project Based Learning (PBL) paradigm [5] is

https://www.arduino.cc/
https://opensource.com/article/17/2/internet-microcontroller-board-esp8266
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus/k-seriesperformancem4/k8x-secure:K8X-SCALABLE-SECURE-MCU
https://en.wikipedia.org/wiki/Raspberry_Pi
https://opensource.com/article/17/1/how-to-orange-pi
https://opensource.com/article/17/1/how-to-orange-pi

The Colloquium for Information System Security Education (CISSE)
June, 2019

4

introduced in this course update process. These concepts can readily be adapted
by other colleges with minor changes.

The current ten specific outcomes of the course include EAC-ABET and
ETAC-ABET student outcomes. With the re-design of the course, the
following intended student learning outcomes will be added.

Outcome 5.1: Design and program using a second development system
based on a current generation 32-b microcontroller and a modern scripting
language, e.g., MicroPython.

Outcome 5.2: Use MicroPython for pin level programming to control a
display subsystem.

Outcome 5.3: Develop a timer based display controller system.
Outcome 5.4: Gather sensor data, encrypt, and transmit over a network.
Outcome 6.1: Pursue team design projects (PBL), as specified, extending

the knowledge gained from lab projects.

2. DESIGN OF THE COURSE CONTENTS

The EENG3288 Microprocessor System Design II course is usually taken
both by Electrical Engineering and Electrical Engineering Technology majors.
A majority of them complete two programming courses prior to taking this
course, namely, ENGR1204 Programming Languages in Engineering and
ENGR3200 Advanced Engineering Programming. Students learn solving
engineering problems in the ENGR1204 course using MATLAB scripting
language. In ENGR3200, the students learn, using the compiled language C++,
to solve engineering problems. Apart from procedural programming in
ENGR3200, they get introduced to object-oriented programming, exception
handling, and input data validation. These students join the EENG3288 class
with some basic concepts of secure software development using C++. In
EENG3288, the students develop C code on CodeWarrior and download the
executable onto the flash ROM of Dragon 12-Plus for execution.

2.1 Introducing a Second Platform – pyboard into EENG3288

https://micropython.org/

The Colloquium for Information System Security Education (CISSE)
June, 2019

5

As discussed earlier, introduction of a second development platform in
EENG3288 is highly desirable and will help satisfy the intended Outcomes 5.1
through 5.4.

Based on our experience in developing labs for a graduate course,
EENG7709 Embedded Systems [6], we chose to introduce a Python-based
microcontroller development system, namely pyboard, in the undergraduate
EENG3288 course. Although EENG7709 uses Raspberry Pi single-board
computer based labs, the Raspberry Pi appears to be a rather complex platform
for simple I/O pin level programming, sensor data gathering, and sensor data
transmission used in the undergraduate EENG3288 course. Since applications
developed for Raspberry Pi run under the Linux OS and not directly on the
microcontroller, the system and power overheads are larger than those on
pyboard for simple applications. MicroPython runs bare-metal on the pyboard,
and essentially provides a Python operating system. The built-in pyb module
contains functions and classes to control the peripherals available on the board,
such as UART, I2C, SPI, ADC and DAC. It connects to the PC over USB,
giving a USB flash drive to save MicroPython scripts, and a serial Python
prompt (a REPL) for instant programming. This allows anyone to instantly
type and execute MicroPython commands, just like one would when running
Python on the PC.

The C-language based program development and debugging required for
the Dragon 12-Plus can be relatively more time consuming and tedious. On the
other hand, network interfaces and most on board features on pyboard are
similar to those extended by Dragon 12-Plus, except that the pyboard is a lot
more powerful and has fewer I/O devices on board.

2.1.1 Pyboard and MicroPython

The inexpensive pyboard is a powerful microcontroller based board with
many useful features including a hardware random number generator.
MicroPython supported on the pyboard is a subset of the Python 3
programming language optimized to run on microcontrollers. Over the last few
years, Python has become the number 1 choice for programming and

https://pyboard.org/
https://store.micropython.org/pyb-features
https://www.python.org/
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

The Colloquium for Information System Security Education (CISSE)
June, 2019

6

embedded application development. MicroPython [7] being a subset of Python
allows simple tweaking to port applications developed using Python.

The MicroPython organization provides detailed tutorials on running the
scripts over pyboard. These together with many blogs and application notes
helped in developing the labs described later in this paper and referenced
therein.

2.1.2 Integrating Python into the Undergraduate Curriculum

Starting Spring 2019, an introduction to Python in addition to MATLAB
scripting started in ENGR1204 as shown in Figure 1. The following course,
ENGR3200, will introduce object oriented programming concepts of Python
starting the Fall 2019 semester. In the Spring 2020 semester, MicroPython will
be introduced in EENG3288, enabling the Outcomes 5.1 through 5.4.

ENGR1204
Programming Languages in

Engineering
MATLAB & Python

(Starting Spring 2019)

ENGR3200
Advanced Engineering

Programming
C++ & Python

(Starting Fall 2019)

EEENG3288
Microprocessor System Design II

C & MicroPython
Dragon 12-Plus & Pyboard

(Starting Spring 2020)

Figure 1: Introducing Python in the Undergraduate Curriculum

2.2 Developing New Labs on pyboard

As mentioned earlier, the pyboard was chosen to cover Outcome 5.1. The
following three new labs were developed to cover Outcomes 5.2 through 5.4.

2.2.1 Lab 1: Seven-segment display of patterns by pin programming

This lab uses a 4-digit 4D75 7-segment display unit with leftmost through
right digits denoted as DSP1, DSP2, DSP3, and DSP4. The pin connections
between the display device and the pyboard are to be done properly and the
pyboard pins need to be set to the ‘out’ direction. Obviously, the displays will
turn off when a ‘high’ is applied to the corresponding cathode pins.

http://docs.micropython.org/en/latest/pyboard/tutorial/index.html

The Colloquium for Information System Security Education (CISSE)
June, 2019

7

We chose to display the digit ‘9’ on DSP2 and ‘6’ on DSP3 as shown in
Figure 2. Since the segment pins are multiplexed between all four devices, we
need to make sure that the segments corresponding to the digit ‘9’ (a, b, c, f,
and g) on DSP2 and those corresponding to the digit ‘6’ (c, d, e, f, and g) on
DSP3 are refreshed at a high enough rate to provide a steady display using
“persistence of vision.” So a delay of 8.5 ms (Python timer.sleep(.0085)) that
corresponds to ~118 Hz was used.

Three setup functions are needed to declare specific pyboard pin direction
as output (set_output), turning all displays off (seg7_off) and turning a digit
display on one of the display device (seg7_disp). All of them use the dictionary
feature of Python to save and retrieve Pin, Segment, and Digit information.
One of the setup functions is listed below for reference.

Figure 2: Pyboard display of ‘96’ on 7-segment displays

Script to display 9 on DSP2 & 6 on DSP3
--------------- Setup Functions ------------- #
def set_output(pinArr,pinName,pinDict):
 "Sets pins for output and stores values in corresponding dictionary."
 for i in range(len(pinArr)):
 pinDict[pinName[i]]=Pin(pinArr[i],pyb.Pin.OUT_PP)

The overall ‘96’ display script is straightforward and is available from the
author upon request.

In the lab, students will be asked to run the supplied program. After
familiarization, they will be asked to modify it to display different digits on the
four 7-segment displays. More complicated displays including changing
patterns can also be assigned without changing any connectivity.

The Colloquium for Information System Security Education (CISSE)
June, 2019

8

2.2.2 Lab 2: Timer cycle based traffic light controller

This lab involves cycling through three external LEDs lighting in the
sequence: RED -> RED -> RED -> RED -> GREEN -> GREEN -> GREEN -
> GREEN -> YELLOW, each for a specified interval.

The MicroPython script involves declaring a “Semaforo(object)” class in
which the initialization of the displays and the timers and an interrupt service
routine need to be defined. Following this, the main program starts by turning
on one of the displays followed by instantiating the previously declared
“Semaforo()” class. Figure 3 shows the hardware interconnection for this lab.

Figure 3: Pyboard with external LEDs for Traffic Light Controller design

Within a class declaration of “Semaforo(object)”, an initialization function
called “_init_” needs to be defined. Apart from initializing the LED devices
counter called “count”, a timer cycle counter called “cyclecount” also needs to
be initialized to zero. A timer object has to be initialized as Timer 2 to have a
frequency close to 1 Hz. By passing the parameter values of prescaler=10 and
period=10000000, the timer will trigger interrupts at the 84 MHz / 10 /
10000001 ~ 0.84 Hz rate. An interrupt service routine called “signal” has to be
used for timer callback. So the top part of the MicroPython code reads as
follows:

Timer Based Simple Traffic Light Controller
Assuming both RED & GREEN LEDs stay ON 4 times as long as YELLOW
import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Semaforo(object):
 def __init__(self):

The Colloquium for Information System Security Education (CISSE)
June, 2019

9

 self.led=[1,2,3,1] # R,G,Y,R
 self.count = 0 # Initialize led count
 tim = pyb.Timer(2,prescaler=10,period=10000000) # default single period
 self.cyclecount = 0 # Initialize cycle count
 tim.callback(self.signal)

Next we need to define the interrupt service routine “signal”. The coding is
done in a long hand manner with specific cycle counts. First, increment
CYCLECOUNT. Then check if CYCLECOUNT = 4 to turn GREEN LED ON,
else if CYCLECOUNT = 8 then turn YELLOW LED ON, else if
CYCLECOUNT = 9 then turn RED LED ON. Finally, reset all counters to
restart the cycle. The code is available from the author by request.

The program can be started and continued in a simple manner. In the lab,
students will be first running the supplied program. After familiarization, they
will be asked to modify it to turn on varying number of LEDs in a specified
sequence of variable durations. Since there is no external control or data
transfer, security risks posed by this application is minimal.

2.2.3 Lab 3: Encrypting temperature/pressure sensor data for porting
& processing

This is the most complicated of the three labs. Here we will only outline
important aspects of this application and the script. Actual script will be
provided on request. The basic requirement is to collect a set of temperature
readings at regular intervals, save them in a .csv file after encryption, transmit
to the PC for decrypting and displaying.

Sensor: This lab uses an external DHT-11 temperature/pressure sensor. As
shown in Figure 4, Pin 1 (VCC) of the sensor is connected to 3V3, Pin 2
(DATA) is connected to Y9, and Pin 4 (GND) is connected to GND on the
board. In order to use the DHT-11 effectively, the dht library created by
polygontwist on GitHub is used to set up the sensor. The file dht.py needs to
be copied to the Pyboard for the sensor to work. Figure 4 shows the overall
interconnection of pyboard, DHT-11, and other subsystems for this exercise.

The Colloquium for Information System Security Education (CISSE)
June, 2019

10

Figure 4: A Complete Setup for Lab 3

Real Time Clock (RTC): This clock class tracks the date and time. To set
up the RTC, datetime() function must be used with the format (year, month,
day, weekday, hour, minute, second, millisecond). The weekday is given by
numbers 1-7, with Monday corresponding to 1 and Sunday to 7. RTC is a 24-
hour clock, so the hour must be given using military time. Datetime() can also
be used to get the current date and time.

Both the time data from the RTC and temperature data from the DHT-11
sensor are encrypted. A simple way to implement encryption is by using the
XOR Cipher. The concept of implementation is to first define an encryption
key and then to perform XOR operation of this key with the characters in the
String, which you want to encrypt. To decrypt the encrypted characters, we
have to perform XOR operation again with the defined key.

Next a *.csv file needs to be opened in which the new data in csv format
needs to be encrypted and appended. To keep the size of this file from growing
indefinitely, the earliest encrypted data needs to be discarded from the file.

The temperature readings on a particular day from the program is shown in
Figure 5. The increase in temperature was initiated by blowing hot air from a
hair dryer onto the DHT-11 sensor.

Figure 5: Temperature readings from DHT-11 securely transmitted and received

The Colloquium for Information System Security Education (CISSE)
June, 2019

11

For the class assignment, variations in some of the parameters will be
specified. One of the most important one will be to use a different
encryption/decryption algorithm discussed in the class. Also other sensors will
be used to capture pressure or other physical quantities.

3. ADDITIONAL DISCUSSION TOPICS AND OUTCOME TO BE
COVERED IN EENG3288

The following additional discussion topics need to be added in EENG3288
to introduce the pyboard, MicroPython and the labs described in this paper.
Within brackets, we also indicate the KU topics and outcomes as well as NICE
Framework categories and specialty areas [8] met by the following discussions
and activities.

a. Introduction to the pyboard and STM32F405RGT6 microcontroller
architecture [CAE-CD EBS KU Outcome 1, Topic 1]

b. Introduction to MicroPython
c. Turning ON LEDs
d. Pin programming and Lab 1 [NICE Framework SA SP.DEV]
e. The switch, callbacks, and interrupts [NICE Framework SA

SP.DEV]
f. Python classes and objects [NICE Framework SA SP.DEV]
g. The Timers and timer cycle based programming and Lab 2 [CAE-

CD EBS KU Topic 5, NICE Framework SA SP.DEV]
h. Internet and Security – Data encryption, decryption and Lab 3 [EBS

KU Topic 9, HFS KU Topic 6b, NICE Framework SA OM.DTA]

In order to satisfy the requirement specified in Outcome 6.1, multiple
projects will be assigned to be pursued in teams of three students. The projects
will conform to the PBL approach and be assigned at the mid-point of the
course to enhance student learning outcomes. Each project will be divided into
three sub-projects so that each student in a team can complete a sub-project
and integrate the project. Many projects are listed at the end of each chapter of
[2]. The instructor will specify the projects based upon these and other sources.

http://docs.micropython.org/en/latest/pyboard/tutorial/index.html

The Colloquium for Information System Security Education (CISSE)
June, 2019

12

4. ACKNOWLEDGEMENT

This project was supported by the National Security Agency (NSA) under
Grant/Cooperative Agreement entitled ‘Cybersecurity Workforce Education -
CNAP Initiatives’ Number H98230-17-1-0321. The United States
Government is authorized to reproduce and distribute reprints notwithstanding
any copyright notation herein.

REFERENCES

[1] Mondal, K.: Teaching an embedded system course to electrical engineering and
technology students, in Proc. ASEE Mid-Atlantic Symposium, Farmingdale State
Univ, NY (2011).

[2] Hwang, H.: The HCS12/9S12 – An Introduction to Software and Hardware
Interfacing. 2nd Edition. Delmar Cengage Learning, NY (2010).

[3] Haskell, R. and Hanna, D.: Learning by Example Using C Programming the
Dragon 12-Plus Using CodeWarrior. LBE Books, MI (2008).

[4] Salewski, F., Wilking, D., Kowalewski, S.: Diverse hardware platforms in
embedded systems lab courses: A way to teach the differences, in ACM SIGBED
Review 2(4):70-74 · (2005).

[5] Rodriguez-Sanchez, M., Torrado-Carvajal, A., Vaquero, J., Borromeo, S.,
Hernandez-Tamames, J.: An Embedded Systems Course for Engineering
Students Using Open-Source Platforms in Wireless Scenarios, in IEEE
Transactions on Education 59(4), 248–254 (2016).

[6] Rao, A., Clarke, D., Bhadiyadra, M. and Phadke, S.: Development of an
Embedded System Course to Teach the Internet-of-Things, in IEEE STEM
Education Conference, ISEC, Princeton, 2018, pp. 154-160.

[7] Tollervey, N.: Programming with MicroPython - Embedded Programming with
Microcontrollers and Python. O’Reilly Media, Inc., CA (2018).

[8] Newhouse, W., Keith, S., and Witte, G.: NIST Special Publication 800-181
National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce
Framework. US Department of Commerce. (2017).

