
Maryam Taeb, Dr. Shonda Bernadin, Dr. Hongmei Chi

Assessing the Effectiveness & Security
Implications of AI Code Generators

Large Language Models & Programming

AI pair programming adopted to help across the tech stack

The quality of AI-Assisted Code generation tools evaluation

Can LLMs enhance, debug, generate and document code?

A New Era for cybersecurity training

31% of university students are using AI to assist with
their assignments

AI coding tools has caused $0.8% of industrial code
vulnerabilities

General-purpose vs Enterprise grade ai code
generation

Evaluation Approach

Main goal —> Evaluating secure
coding practices of LLMs and the use
of non-vulnerable built-in functions in
recommended code

Covered Vulnerabilities

Generative AI Code Generation tools

• CodeX Creating functions that would execute equivalent tasks as our code snippets, and
analyzing the usage of built-in functions

• CodeBERT Predicting the names of built-in functions through the masking technique

• GPT 3.5

• Assessing whether the generated code produced by CodeX, CodeBert, and the previously
designed vulnerable code contained any vulnerabilities

• Receiving recommendations for mitigation techniques and comparing suggestions with
static code analysis tools’ suggestions

Vulnerable Code illustration

• printf  expects a format string

• undefined behavior

• No input validation or error checking on the scanf

• undefined behavior

• Input variable is declared as a global variable

• Hard maintenance

• No bounds checking on the input variable

• buffer overflow vulnerability.

• No return statement

• undefined behavior

A function that takes user input and displays it as an output

Example Behavior

CodeX CodeBERT GPT3.5

GPT 3.5 vulnerability mitigation recommendations

Results

Discussion

• CodeX had the highest code generation capability, generating code

• GPT 3.5 had relatively lower code generation capabilities but excelled in explaining potential
vulnerabilities, commenting on the code, and analyzing log files

• CodeBERT weak Performance in terms of built-in function suggestion

• Best use case of AI-Assisted Code generation tools is in Acceleration mode when Programmer
already knows what they want to do next

Thank you for your time

Maryam Taeb

	Assessing the Effectiveness & Security Implications of AI Code Generators
	Large Language Models & Programming
	A New Era for cybersecurity training
	Evaluation Approach
	Covered Vulnerabilities
	Generative AI Code Generation tools
	Vulnerable Code illustration
	Example Behavior
	Results
	Discussion
	Thank you for your time

