
Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

1

Modules for Teaching Secure in Android
Application Development

Christopher Doss, Ph.D.
cdoss@ncat.edu

Xiaohong Yuan, Ph.D.

xhyuan@ncat.edu

Varshar Chennakeshva
vkchenna@aggies.ncat.edu

Aakiel Abernathy

aabernat@aggies.ncat.edu

Kenneth Ford
kmford@aggies.ncat.edu

North Carolina A & T State University

Greensboro, NC 27411

Abstract - The rise of mobile computing devices has resulted in an increased emphasis on
mobile application development courses within computing curricula. While there are many
available teaching modules for app development, there is a dearth of materials that incorporate
secure software development for mobile devices. The goal of this project is to develop teaching
modules that highlight the need for security in app development. These modules are based on
CERT Java secure coding rules applicable to developing Android applications published by
the Software Engineering Institute at Carnegie Melon University. This paper describes the
modules we developed/are developing. These modules are further development and extension
of a set of hands-on labs developed and assessed in two courses in the Spring 2017 semester.
The assessment results is also discussed. These modules can be adopted by instructors of
Android application development.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

2

Keywords

software security, secure coding, Android application development, teaching module

1 INTRODUCTION

The proliferation of mobile devices, especially those based on the Android

operating system, has led to the development of courses targeting mobile application

development. These courses differ from traditional computer programming courses

as they must incorporate the features and limitations of mobile devices, including

various sensors, limited battery life, accelerated operating system updates, and

operations being restricted to background threads. However, the increased

importance of mobile devices, especially their use for personal data, means there are

potential security risks [1-3]. Thus, it is imperative that students understand how to

mitigate security risks as they learn how to develop these applications.

Unfortunately, there is a lack of readily available teaching modules that address

security for mobile application development courses.

We are developing nine teaching modules with hands-on labs to teach students

the common mistakes made by Android application developers, how these mistakes

lead to security vulnerabilities and how these vulnerabilities can be mitigated by

following Android secure coding rules. Each teaching module includes learning

objectives, presentations, instructor notes, online resources, hands-on lab menu,

quizzes, discussion questions, test questions, and example solutions to questions.

The estimated completion time of each teaching module is between 1 and 4 hours.

These modules are further development and extension of a set of hands-on labs for

teaching Android secure coding. These hands-on labs were used in two classes in

the Spring 2018 semester.

This paper is organized as follows. Section 2 discusses the nine modules. Section

3 presents a sample of one of the modules. Section 4 shows the assessment results

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

3

of the hands-on labs based on which the modules are developed. We conclude in

Section 5.

2 MODULES FOR TEACHING ANDROID SECURE CODING

2.1 Module 1: CERT Android Secure Coding Rules

This module provides an overview of the CERT Android Secure Coding Rules

[4]. Hands-on lab: Students use SACH [5] to scan a vulnerable app for non-

compliance of CERT rules. They will then correct issues and rerun to ensure issues

have been addressed.

2.2 Module 2: Sensitive Content Provider

A content provider allows an application to share its data with other applications.

While this allows for an enhanced overall experience, issues can occur when

sensitive information is shared. When a content provider is declared public, sensitive

information may be leaked to malicious apps. This module discusses the

vulnerability of leaking sensitive information through a public content provider.

Hands-on lab: students will create a malicious app to access sensitive information

stored in SQLite database through a public content provider. Students will then

make the content provider private, and verify that the malicious app can no longer

access the sensitive information.

2.3 Module 3: Sensitive Activity

Intent filters allow an activity to be exported to other apps. This may enable

unintended uses and abuses from malicious apps. This module discusses the

vulnerability of not restricting access to sensitive activities. Hands-on lab: Students

will use the Android Asset Packaging Tool (aapt) to identify activities with an intent

filter, and develop a malicious app that accesses the activity to extract sensitive

information. They will then correct this vulnerability and verify removal of the

threat.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

4

2.4 Module 4: Eavesdropping on Broadcast Message

Android apps use broadcast to send messages or intents to multiple applications.

Broadcasts using implicit intent allow passive eavesdropping, denial of service

attacks, or service hijacking. This module discusses different types of broadcasts, and

how to prevent the vulnerability of broadcasting sensitive information using an

implicit intent. Hands-on Lab: Students will implement a malicious app to

eavesdrop a message broadcasted by a vulnerable app. The will then correct the

vulnerable app and verify it is no longer susceptible to eavesdropping.

2.5 Module 5: Debuggable Apps

This module discusses how sensitive information can be leaked if an app is

released as debuggable, and how to prevent the vulnerability. Hands-on Lab:

Students will use Drozer [6], an open source analysis tool, to identify debuggable

apps. They will then use the Android SDK tool adb (Android Debug Bridge) [7] to

find the databases of a debuggable app. Next, students will insert entries into the

database of the debuggable app. Students will then make the app non-debuggable,

and verify that the app can no longer be exploitable.

2.6 Module 6: Logging Sensitive Information

Logging is useful to debug applications. However, developers may log sensitive

information and forget to remove those logs before releasing the application. This

module discusses the vulnerability of logging sensitive information. Hands-on lab:

Students will use adb to retrieve log files, and examine them for sensitive

information. Students will also correct the code, and verify that the app is no longer

logging sensitive information.

2.7 Module 7: Storing Sensitive Information on External Storage

Files on external storage of a mobile device can be modified or read by other

apps installed on the device for Android versions which allow read/write. The

external storage can also be removed from the device and mounted elsewhere, and

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

5

thus can be accessed by anyone who has the external storage. This module discusses

the vulnerability of storing sensitive information on external storage. Hands-on Lab:

Students will write a malicious app to read the content of a file stored on an external

storage by a vulnerable app. Students will then modify the vulnerable app source

code to store the file in the internal storage device, and verify the malicious app can

no longer access the file.

2.8 Module 8: Storing Sensitive Information in Shared Preferences

Data can be stored in shared preference in the form of key-value pairs. Shared

preference stores data in an xml file under the application directory. Shared

preference files can be uploaded using the adb tool. This module discusses the

vulnerability of storing sensitive information in shared preferences, and how to

prevent the vulnerability by encrypting the data before storing it in shared

preference. Hands-on Lab: Students will first add unencrypted user id and password

to shared preference, then show how a malicious user can back up and view this

data. Students will then encrypt the data and store it in shared preference.

2.9 Module 9: Allowing Database Backup

If the attribute android:allowBackup is set to true for an app, then all runtime

app information such as shared preferences and databases can be backed up by

anyone who has access to the device. This module discusses the vulnerability of

allowing backup of SQLite database storing sensitive information. Hands-on Lab:

Students will first backup the database of an app storing sensitive information to a

PC using adb tool, and view the database content. Students will then set

android:allowBackup to false, and verify that database can no longer be backed up

to the PC. Students will also encrypt the sensitive information in the database.

3 SAMPLE CONTENT OF A MODULE

The following content is from Module 3: Sensitive Activity.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

6

SENSITIVE ACTIVITY

Module Description: An activity may be exported to other apps if an intent filter is

declared for the activity. This may lead to other apps, including malicious apps to

activate the activity for unintended use. This micro-module discusses the

vulnerability of not restricting access to sensitive activities.

This module focuses on basic knowledge of java programming and the use of

exploiting various intent filters. It focuses on the basic constructs and useful

commands such as widgets, activity calling, and extracting valuable information to

execute certain tasks during the lab assignment. In this module, Student’s will

implement a malicious app that will have the ability to access sensitive information

of another application.

Prerequisite Knowledge: Basic knowledge of programming (variables, widgets,

implicit/explicit intent filters); knowledge of a scripting inside of a command

prompt. Students should be able to read a manual page with guidance. Instructors

should conduct a pre-assessment to confirm that students have the above

background knowledge.

Length of Completion: 1-4 contact hours.

Level of Instruction: Undergraduate level

Learning Setting: This module is intended for in-class/online instruction.

Lab Environment: Android Studio 3.0.1 and the emulator

Activity/Lab Tasks: Students will use the Android Asset Packaging Tool (aapt) to

extract androidmanifest.xml file from an apk file, and identify the activities in the

app that have intent filters declared. Students will then write a malicious app to

activate the activity to access sensitive information. The students will then make the

activity not exported, and then verify the malicious app can no longer activate the

activity to access sensitive information.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

7

Lab Files that are Needed:

1. Vulnerable.apk (an unsecure application used to store user information).

The user can add, update, and delete information in the SQLite database)

2. ContentProviderDB source code (the source code for the Vulnerable.apk).

Can be downloaded at:

http://ccd.ncat.edu/mobile/SWdevelopment/ContentProviderDB(Assign

ment).zip

Module Learning Outcomes:

1. Explain activity and sensitive activity

2. Explain the difference of implicit intent filter and explicit intent filter

3. Write a malicious app to activate the activity to access sensitive

information

Instructional Files and Online Resources that are Needed:

Lesson: Sensitive Activity

 SensitiveActivity_Presentation.pptx

 SensitiveActivity_Lab.docx

 SensitiveActivity_LabFiles

 SensitiveActivity_LabSolutions.docx

 SensitiveActivity_AssessmentGuide.docx

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

8

4 ASSESSMENT RESULTS OF ANDROID SECURE CODING HANDS-

ON LABS

Seven of the Android secure coding labs, not in the module format, were taught

in a graduate level course “COMP 727 Secure Software Engineering” in Spring

2017. These labs include Modules 1 – 7 from Section 2 above. The class has 21

students. Seventeen (17) students submitted the lab assignment. The average score

of the assignment is 86. After the students submit the lab assignments, the students

were asked to participate in a survey. Twelve students participated in the survey.

The survey asked students to rate their level of knowledge in the learning

objectives of the labs using a scale of 1 (very low) to 5 (excellent). The survey also

asked students questions on the effectiveness of the course module. Table 1 shows

the average student rankings on the learning objectives. Table 2 shows student

responses to survey questions.

Table 1

Student self-ranking of learning objectives

Learning objective Average ranking

Identify and correct security vulnerabilities in Android

program according to CERT

3.08

Discuss methods to prevent security vulnerabilities in

Android program

3.25

Demonstrate how some of the vulnerabilities can be

exploited

3.25

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

9

Table 2

Student responses to survey questions

Question Response: Percentage

How effective was the Android

Secure Coding course module

material?

Moderately effective 33.33%

Very effective: 25.00%

Extremely effective: 8.33%

How organized was the Android

Secure Coding course module

material?

Neither agree nor disagree: 8.33%

Somewhat agree: 33.33%

Strongly agree: 8.33%

How motivated were you to learn

about Android Secure Coding

material?

Neither agree nor disagree: 8.33%

Somewhat agree: 33.33%

Strongly agree: 33.33%

The hands-on lab exercises helped

you better understand the material

compared to having only power point

presentation describing the concepts.

Neither agree nor disagree: 0.00%

Somewhat agree: 25.00%

Strongly agree: 41.67%

The hands-on lab exercise with

SACH helped you understand

security vulnerabilities in Android

programs.

Neither agree nor disagree: 8.33%

Somewhat agree: 41.67%

Strongly agree: 33.33%

The hands-on lab exercises helped

you better understand how some of

the vulnerabilities in Android

programs can be exploited.

Neither agree nor disagree: 8.33%

Somewhat agree: 50.00%

Strongly agree: 25.00%

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

10

Table 2

Student responses to survey questions

Question Response: Percentage

You enjoyed doing the lab exercises Neither agree nor disagree: 8.33%

Somewhat agree: 25.00%

Strongly agree: 16.67%

The learning objectives (listed in

questions 1 above) were met.

Neither agree nor disagree: 16.67%

Somewhat agree: 41.67%

Strongly agree: 25.00%

The lab instructions were clear. Neither agree nor disagree: 16.67%

Somewhat agree: 0.00%

Strongly agree: 8.33%

The level of difficulty in the lab

exercises is appropriate.

Neither agree nor disagree: 25.00%

Somewhat agree: 25.00%

Strongly agree: 8.33%

The lab exercise helped you to

develop problem solving and critical

thinking skills, and ability to learn

independently.

Neither agree nor disagree: 0.00%

Somewhat agree: 50.00%

Strongly agree: 16.67%

Approximately, how many hours did

you spend on this hands-on

assignment?

< 5 hours: 8.33%

6-10 hours: 33.33%

11-20 hours: 33.33%

21-30 8.33%

>30 hours: 16.67%

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

11

Table 2

Student responses to survey questions

Question Response: Percentage

The time I spent on the lab exercises

was worthwhile.

Neither agree nor disagree: 16.67%

Somewhat agree: 16.67%

Strongly agree: 25.00%

The students commented that, through this module they learned how to use

Android studio for android development, how to find vulnerabilities in an Android

app, different types of vulnerabilities, and some good practices for coding and

debugging an app. The major concern students had is that the lab instructions were

not clear. Most of the students didn’t have Android programming experience,

which made this course module difficult for them.

The above hands-on labs were also taught in the class COMP365 Programming

Methodologies in the Spring 2017 semester. There were 27 students enrolled in the

course. However, only 10 submitted the assignment. The average score of the

students’ assignment was 76 out of 100. Students found the hands-on labs difficult

because they lack background in Android programming, and that the lab

instructions were not clear.

The initial assessment shows the hands-on labs were useful in introducing secure

coding practice to Android developers. However, the lab instruction needs to be

improved in terms of clarity. Therefore we are re-developing and re-organizing the

lab menus into modules so it is easy to and use and can be widely adopted by

instructors of computer/Android programming. Background information on

Android programming was added to the modules to address the issue that some

students lack knowledge and experience with Android programming.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

12

5 CONCLUSIONS

We are developing nine modules that will enable instructors to incorporate

security into their mobile application development courses. These modules include

teaching materials, labs, quiz and test questions, and solutions. Our initial assessment

indicates that the students were able to understand the vulnerabilities inherent in

Android applications and how to address them. The modules will be incorporated

into the undergraduate/graduate “ECEN 485/685 Application Development for

Android Devices” course and the “COMP727 Secure Software Engineering”

course in the Spring 2018 semester. These modules will be assessed again in these

courses.

ACKNOWLEDGEMENT

This work is partially supported by the National Security Agency under the

grant H98230-17-1-0400. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Security Agency.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

13

REFERENCES

[1] Miller, K.W., Voas, J. and Hurlburt, G.F. 2012. “BYOD: security and privacy
considerations”, IT Professional, Vol. 14 No. 5, pp. 53-55.

[2] Yun, H., Kettinger, W. and Lee, C. 2012. “A new open door: the smartphone’s
impact on work-to-life conflict, stress, and resistance”, International Journal of
Electronic Commerce, Vol. 16 No. 4, pp. 121-152.

[3] OWASP. Projects/OWASP Mobile Security Project - Top Ten Mobile Risks.
Retrieved January 7, 2017 from
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-
_Top_Ten_Mobile_Risks.

[4] Seacord Robert. The CERT Oracle Secure Coding for Java: Android (DRD).
Retrieved July 30, 2017 From
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1115.

[5] Aakiel Abernathy, Edward Hill, Xiaohong Yuan, Kevin Bryant, Jinsheng Xu,
Kenneth Williams, SACH: A Tool for Assisting Secure Android Application
Development, IEEE SoutheastCon 2017.

[6] MWR LABS. Drozer: Comprehensive security and attack framework for Android.
Retrieved July 30, 2017, from https://labs.mwrinfosecurity.com/tools/drozer/

[7] Android Studio. Android Debug Bridge. Retrieved July 30, 2017, from
https://developer.android.com/studio/command-line/adb.html

