
Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

1

Example Security Injections for Hardware
Courses

Chenyang Li
Dept. of ECE

Portland State University
Portland, Oregon

chenyang@pdx.edu

Dr. John M Acken
Dept. of ECE

Portland State University
Portland, Oregon
acken@pdx.edu

Dr. Sohum Sohoni
Polytechnic School

Arizona State University
Tempe, Arizona

sohum.sohoni@asu.edu

Abstract - This paper gives examples of security injections in computer engineering courses,
including courses on hardware design. More broadly, the paper aims to show how knowledge
of hardware and software implementations relate to security exploits is important for students
who design computer hardware, and how knowledge of the hardware and architectural features
is important for those who focus on computer security. The paper provides examples to illustrate
the impact of the knowledge of underlying architectural optimizations and hardware limitations
on security features and exploits. Examples of educational tools and methods for integrating
security education in context in the computer engineering curriculum are also described.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

2

Keywords

Hardware, encryption, teaching, education

1 INTRODUCTION AND BACKGROUND

Information security is an important issue for many organizations in different

disciplines, such as banking, medicine, legal and telecommunications. Computer

hardware is a critical part of computer security. However, a traditional computer

security class tends to focus on teaching network and software security. So, it is of

increasing importance that we incorporate security and hardware in both the

undergraduate and graduate curriculums. The goal is to get a basic understanding

of security to all electrical and computer engineering students by injecting security

examples into all the relevant electrical and computer engineering courses. This

paper emphasizes computer hardware concepts related to information security and

summarizes our own experiences of including encryption, which is the central part

of cryptography, in teaching hardware. The specific cases in this paper demonstrate

the injection of security examples relevant to various levels of computer hardware

instruction rather than into a lump sum security course.

The broad collection of people (from hardware designers to programmers and

information technology personnel) who deal with computer security issues need to

know different things about cryptography than do cryptographers or

mathematicians. Protecting the implementation from attacks is more important than

theoretical knowledge of attacks on the algorithm itself [1]. To meet the current

industry demand for qualified computer security professionals, we need innovative

courseware that can help students apply information assurance theory into practice.

One proposal to improve security education is presented by Chen & Lin [2]. The

authors present their hands-on courseware design that combines practice with

theory. Specifically, by using well-designed hands-on laboratory exercises, they

allow students to experience the technical details of what they have learned from

information security lectures. The importance of skepticism and critical thinking in

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

3

the role of evaluating and procuring cryptosystems should be emphasized, since

most people do not understand it, and many claims for security are questionable [3].

Many cryptography methods are difficult to program in lower level languages

such as assembly language. To overcome this difficulty, tools and small examples

are used. A comprehensive, animated, open-source piece of free software,

CrypTool, is a good tool to help us understanding the cryptographic concepts [4].

Another open-source tool is the Progressive Learning Platform or PLP [5,6,7],

which is a computer architecture simulation and visualization tool that can be used

in multiple computer engineering courses.

In addition to tools, students learning is facilitated by good examples. In the late

1970’s, Rivest, Shamir, and Adelman created an asymmetric encryption scheme

now called the RSA algorithm [8]. The RSA algorithm provides the context for

many of the examples in this paper.

The paper is organized as follows: Section 2 provides some calculations that

illustrate the dependency of security algorithms on the underlying hardware

implementation. Section 3 covers hardware support for security execution. Section

4 provides recent examples of the interplay between computer architecture

optimizations and security issues. Section 5 provides our insights on teaching

computer security. Section 6 summarizes the paper.

2 CALCULATIONS ARE HARDWARE IMPLEMENTATION

DEPENDENT AS DEMONSTRATED WITH RSA EXAMPLES

2.1 The RSA Algorithm

The security of using encryption to protect messages is dependent upon the

security of the key. There are two basic techniques for encrypting information:

symmetric encryption and asymmetric encryption. Symmetric key encryption is a

type of encryption that makes use of a single key for both the encryption and

decryption process, whereas asymmetric key encryption uses different keys for

encryption and decryption. In an asymmetric encryption system, the key used to

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

4

do the encryption is called the public key and the key used to do the decryption is

called the private key. Also, encryption can be either a stream cipher or a block

cipher. Stream ciphers continuously encrypt the stream of data dependent upon

previous data, whereas a block cipher encrypts each fixed size block of data

independent of the other blocks. RSA is an asymmetric block cipher.

A weak point in a system using symmetric encryption is the communication of

the key. When Alice sends Bob an encrypted message, the intention is to prevent

Eve from eavesdropping on the contents of the message. However, because the

same key is used for encryption and decryption, Eve can decrypt the message if she

has intercepted the key. Asymmetric encryption uses a different key for encryption

than for decryption. Therefore, Bob can publicly reveal the encryption key so that

Alice can encrypt messages. However, Bob keeps the decryption key secret without

any requirement to reveal it to anyone. Without the decryption key, Eve cannot

decipher Alice’s secret message. One method of public key encryption invented by

Rivest, Shamir, and Adelman is now called the RSA algorithm [8]. The encryption

key is two integers (e and n) and the decryption key is two integers (d and n). The

integers e and n are made public so that anyone can encrypt a message to Bob, but

d is kept secret so that only Bob can decrypt the messages. This is possible because

of an interesting mathematical feature of combining the modulus operation with

exponentiation. The cypher text (c) is calculated by raising the message (m) to the

power (e) mod n. That is c = m^e mod n. The cypher text is decrypted by raising

the cypher text (c) to the power d mod n. That is mxg = c^d mod n or mxg = (m^e

mod n)^d mod n. The result is that the final message (mxg) is equal to the original

clear text (m). The common integer (n) is the product or two large prime numbers

(p) and (q). Specifically, n = p*q. The encryption number (e) and the decryption

number (d) are related where e*d = 1 (mod (p-1)*(q-1)). The ability to publicly

reveal an encryption key to create encrypted messages that can be sent securely over

open communication channels is fundamental to information security on the

internet. The RSA algorithm is presently the most common public key encryption

algorithm used on the internet. A step in information security education is to teach

this algorithm to students and have them calculate examples. Another lesson is due

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

5

to the fact that to crack RSA one needs to factor a big number, therefore the student

must learn the effects of the rapid growth in size of a number and hence difficulty

in calculating exponentials (i.e. m^e and c^d). Also, the examples can inject security

ideas when used in math and computer science classes as real-life examples of the

application of the modulus operator.

Figure 1: RSA encryption/decryption process

In summary, as shown in figure 1 for RSA the values of n and e are used in

encrypting the message whereas n and d are used in decrypting the message

encrypted. The RSA encryption key is the two numbers e and n. The RSA

decryption key is the two numbers d and n. m is the message we want to send. The

original text message (Plaintext) is encrypted by using the following equation:

c = (m^e) mod n

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

6

where c is the cipher-text which the Alice sends to Bob. On receiving the cipher-

text it is decrypted by using the following equation:

mxg = (c^d) mod n

where mxg = m and is the original text message (Plaintext).

2.2 M6811 8-bit Processor Teaching Example

The introductory computer principles class at Oklahoma State University used

the Motorola 6811 in the labs. The teaching assistant (TA) was instructed to create

a lab assignment doing RSA encryption on the 8-bit microprocessor. In the original

RSA paper the public key was (e, n) = 17, 2773), the private key was (d, n) = (157,

2773), the plain text message was m = 920 and the cypher text was c = 948. While

this was fine for demonstrating the algorithm, the numbers were far too large for

an 8-bit processor. The TA was asked to find a small example as small numbers

allow hand calculation to check the program in addition to fitting in 8-bit registers.

To teach how big the numbers get, consider the tiny example of (e, n), (d, n) = (11,

15), (3, 15). For a plain text message of 7, 7^11 = 1,977,326,743. And

1,977,326,743 mod 15 is 13. So, for m = 7, c = 13. But the intermediate value is

large, such as 1,977,326,743 in the previous example. An interesting observation

noted by the TA was that for the tiny example of (e, n), (d, n) = (11, 15), (3, 15),

the majority of the message values slip through the encryption algorithm unchanged

[9]. These holes were where the cypher text was equal to the plain text. Larger key

values are needed to avoid this problem. Part of the instruction for implementing

encryption is to understand that the character strings in a computer are actually

numbers. The standard translation uses ASCII codes for the letters. Also, the

instruction includes the limitations of the modulo operation – specifically, the part

of the key (n) needs to be larger than the largest message value (m) to be encrypted

or else multiple plain text messages will be encrypted to the same value for the

cipher text. ASCII codes are 7-bits, so the character values vary from 0 to 127. The

TA found the key set of (e, n), (d, n) = (23, 143), (47, 143) works for the 8-bit

processor. Some programing tricks are required to be sure there is not a calculation

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

7

overflow, but these are in a later section of this paper. Table 1 shows example cases

of keys used for RSA on the 6811. Notice that case 1, the tiny keys as described

above, had problems with a majority of plaintext values failing to encrypt. The keys

for Case 2 provide values that can be implemented on an 8-bit processor without

the problem of a large percentage of plaintext values failing to encrypt. Case 3,

which are the keys and values from the original RSA paper, is not readily

implemented on an 8-bit processor. The lessons for electrical engineers in an

introductory computer principles class are the number limitations for large integer

calculations as demonstrated by the real-world example of RSA encryption.

 p q (e, n) (d, n) m c

Case 1 3 5 11, 15 3, 15 7 13

Case 2 11 13 23, 143 47, 143 140 17

Case 3 47 59 17, 2773 157,

2773

920 948

Table 1. RSA encryption examples implemented with 6811 assembly code. Note, the
original RSA example which is case 3 exceeded the capability of the 6811. The lined

through values identify numbers too large for an 8-bit processor.

2.3 Synergy of Teaching and Research

While creating the small example described in the previous section, the TA

found that some key values created cipher text that was equal to the original plain

text. The fact that some keys for RSA do fail to encrypt more messages that others

is formally described by Blakely and Borosh [10]. Specifically, they identified the

limits for these fixed points where m^e mod n = m, and they proposed a measure of

opacity for a cryptosystem for how many fixed points can occur. Further,

Chmielowiec presented an estimate of the probability of finding a fixed point and

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

8

the resulting likelihood of such points from random selection [11]. Behnaz Sadr

further characterized the location and likelihood of fixed points [9]. She used the

term “holes” for the cases where a message leaked through RSA encryption so that

ciphertext was equal to plaintext. Specifically, where m = c = m^e mod n. The other

two papers [10, 11] used x^e = x mod n. Sadr found several characteristics of these

holes, such as for any set of keys there are at least 6 holes, and that the number of

holes is symmetric about n/2. Kocakulak and Temel demonstrated Sadr’s findings

with a Java implementation [12]. The lesson for students is that not all keys are

equally good.

2.4 C Language Implementation Example

Digital computer classes introduce the hardware implementation effects on

programming languages. C is a widely used programming language. As a

demonstration of the relationship between programming languages and the

underlying hardware implementation, we use the implementation of the RSA key

generation and encryption/decryption in C.

There are two parts of this implementation. The first part selects two prime

numbers, which are used for key generation. The second part uses the generated

keys for encryption and decryption. This module encrypts and decrypts the given

message/plaintext (integer form) to a cipher-text with the key pair generated in the

key generation module.

The examples in the table 2 demonstrate the effect of different key size. Notice

that case 3 are the keys and values from the original RSA paper, whereas case 4 uses

a similar sized key. Case 5 is an example of overflow during the

encryption/decryption process whereas the last one shows the case of overflow in

the key generation part: the program will display cipher-text is 0 due to the

overflow problem, to be specific in this case, p * q is not able to fit in a integer data

type. The times in the table were generated from running C code on an Intel core

i5 laptop with a Mac OS. Although these p and q values seem to be big, this key

size is about 150 bits, which is far less than the 2048 key size in real life. The lesson

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

9

learned here is that even for this small key size a simple implementation cannot

handle the intermediate values. The largest integer number for integer data type is

2,147,483,647. Therefore, the lesson to inject is that implementing security features

requires the ability to handle very large integers.

One implementation lesson is for the key generation module. One way to

implement key generation is using iterative attempts. The Chinese remainder

theorem is a theorem of number theory, which states that if one knows the

remainders of the Euclidean division of an integer n by several integers, then one

can determine uniquely the remainder of the division of n by the product of these

integers, under the condition that the divisors are pairwise coprime. Allows an

alternative implementation of key generation that directly applies a math concept

to replace trial and error.

A second lesson is in the implementation of encryption and decryption module.

From modular arithmetic, one can use a trick in ordering calculations to avoid

overflow of bits:

𝐴𝐴𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝐴𝐴(𝐴𝐴(𝐴𝐴… ((𝐴𝐴2)𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁) …𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁)𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁)

for example, with e = 5:

𝐴𝐴5 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝐴𝐴(𝐴𝐴(𝐴𝐴(𝐴𝐴2)𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁)𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁)𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

The above property can be used for modular arithmetic calculation for example,

(2^3) mod 5 = 3. This calculation can be modified as follows: ((((2 mod 5) *2) mod

5) *2) mod 5 = 3. We inject the example of reordering calculations for encryption

to teach the lesson as used in the C code to avoid overflow, since 𝐴𝐴𝑒𝑒 could be a

very big number and 𝐴𝐴2 is relatively small. The important theme to note here, is

how the limitations of the hardware and the awareness of these limitations, dictates

the decisions at the algorithmic implementation level.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

10

 p q (e, n) (d, n) m c encrypt

time

decrypt

time

Case 3 47 59 17, 2773 157, 2773 140 2114 4.17us 4.33us

Case 4 23 29 13, 667 237, 667 140 487 3.67us 3.83us

Case 5 2204333 2204341 43, *ex5n *ex5d,

*ex5n

140 overflow overflow overflow

Case 6 *ex6p *ex6q overflow overflow 140 0 overflow overflow

*ex5n = 4859101609553

*ex5d = 1356027125827

*ex6p = 22953686867719691230002707821868552601124472329079

**ex6q = 30762542250301270692051460539586166927291732754961

Table 2. RSA examples implemented in C

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

11

2.5 Python Language Implementation Example

Some programming languages remove many of the hardware implementation

restrictions that have been described. Python is a very popular dynamic

programming language.

The examples in the table 3 are used to demonstrate the effect of different key

sizes. Again case 3 is the original RSA paper case, whereas case 4 uses a similar sized

key. Case 5 will have overflow in C implementation but works fine with Python,

whereas the last case shows the case of overflow in the key generation part: the

program displays “OverflowError”. These times were generated from Python code

on an Intel core i5 laptop with a Mac OS.

Figure 2: Encryption and Decryption time for message=140

Alese, et al. [13] have conducted a similar experiment, but they have compared

the key size to the encryption, decryption and the key generation time as shown in

figure 3. The lesson here is that security due to increasing key size has an impact on

computation time.

0
5

10
15
20
25
30
35
40

Case 4 n = 667 Case 3 n = 2773 Case 5 n =
4.85e12

Ru
n

tim
e

in
 µ

s

RSA Cases

Encryption time (ms) Decryption time (ms)

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

12

Figure 3: Key size vs Encryption and Decryption time [13]

In an RSA operation, the computation is performed by a series of modular

multiplications. In practical applications, a small public exponent can be considered

as a public key. Many users can use the same public exponent, each with a different

modulus. This makes encryption faster than decryption and verification faster than

signing. Similarly, this principle can be used for larger numbers, and computation

can be simplified and overflow of bits can be prevented.

This section shows how RSA encryption examples are used in general computer

hardware instructions to demonstrate implementation principles and limitations.

The next section shows an example of a specific hardware implementation directed

at security.

0

500

1000

1500

2000

2500

3000

1024 2048 3072 7680

Ru
n

tim
e

in
 m

s

RSA Key size in bits

Encryption time (ms) Decryption time (ms)

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

13

 p q (e, n) (d, n) m c encrypt

time

decrypt

time

Case 3 47 59 17, 2773 157,2773 140 0x617 11.83us 8.33us

Case 4 23 29 13, 667 237, 667 140 0x1e7 10.17us 7.17us

Case 5 2204333 2204341 43,

*ex5n

*ex5d,

*ex5n

140 *ex5c 24.33us 38.83us

Case 6 ex6p Ex6q overflow overflow 140 overflow overflow overflow

*ex5c = 0x313f09ce84d

Table 3. RSA implementation in Python

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

14

3 EXAMPLE HARDWARE SUPPORT FOR SECURITY

Hardware features make security implementation easier, for example, Intel’s

Software Guard Extensions (SGX) as one of the ideas. SGX is a set of extensions to

the Intel architecture that aims to provide confidentiality and integrity even in the

presence of privileged malware [14, 15].

These isolated execution environments, called enclaves, are designed to run

software and handle secrets in a trustworthy manner, even on a host where all the

system software (including OS, hypervisor, etc.) and system memory are untrusted.

When enclave code and data are cache-resident, they are guarded by CPU access

controls; when flushed to DRAM or disk, they are transparently encrypted and

integrity protected by an on-chip memory encryption engine [16]. There are three

main functionalities that enclaves achieve: Isolation–code and data inside the

enclave protected memory cannot be read/modified by any process external to the

enclave. Sealing– the process of encrypting it so that it can be written to untrusted

memory or storage without revealing its contents [17] And Attestation–a special

signing key and instructions are used to provide an unforgeable report attesting to

code, static data, and (hardware-specific) metadata of an enclave, as well as outputs

of computations performed inside the enclave [18]. There are two forms of

attestation: local and remote. Local attestation is between two enclaves on the same

platform Remote attestation generates a report that can be verified by any remote

party. The lesson for a hardware architecture class is that this an example of how

the security of a system can be enhanced by the support of specific hardware features.

This section describes just one example of a specific hardware implementation to

improve security. The next section describes how a student can learn about security

related to computer hardware in general.

4 RECENT LESSONS DEMONSTRATING HARDWARE

IMPLEMENTATION EFFECTS ON SECURITY

Computer Architecture can improve hardware performance by implementing

specific hardware for instruction execution improvement and cache access speed up.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

15

These performance-enhancing features provide opportunities for security problems.

One example is out of order execution, which allows an instruction to execute

when it is ready rather than waiting for its turn in the sequence of instructions. Out

of order execution is utilized by the recent attack know as meltdown [19, 20]. The

details of the attack and its effects are too large for an explanation in this paper.

However, the two lessons to be learned for hardware designers illustrate the main

theme of this paper. The first lesson is that there are tradeoffs with security and

performance. This has been demonstrated by the patch releases for this bug, which

simply disable the out of order execution thereby degrading performance while

improving security. The second lesson from this example is that security side effects

need to be considered at design time. As described in the next section, the

Progressive Learning Platform was used to teach students about stack overflow as a

general concept and as applied to security.

The second recent example comes from the performance enhancement

hardware to support speculative execution. When a conditional branch is reached,

the performance can be enhanced by executing both paths of the branch in parallel,

and then saving only the path that should have been executed after the condition

decision is resolved. The Spectre [20, 21] attack takes advantage of this by accessing

the cache illegally down the conditional path that will be cancelled. Once again,

Spectre is far too complex to describe in this short paper, but there is still a hardware

lesson to be learned. The specific lesson for this attack is that the hardware

implementation can have side effects outside the security control of the operating

system.

5 TEACHING COMPUTER SECURITY

Whether it is block-chains, RSA, or other security fundamentals, they all rely

on certain functionality and limitations of the underlying hardware. For example, if

“one-way functions” could have all the possibilities for their reverse calculations

computed within milliseconds, they would not remain one-way functions. While

this example is far-fetched with today’s technology, there are many examples within

the last two decades, where the growth in computational performance has resulted

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

16

in changes to security protocols. It is thus extremely important for students in

computer science and computer engineering to understand security issues in the

context of various courses that they take, including courses related to hardware. A

strong and accurate mental model of computing is not only essential for becoming

a good programmer, but is crucial to understanding various exploits, as they often

occur at the boundary of hardware and software. The idea of injecting security

concepts into various hardware courses rather than just tacking on a “security

hardware course” requires a cultural shift in electrical and computer engineering

departments to take a holistic view of the curriculum as opposed to isolated

approach of separate course topics.

To aid the adoption of security injections in various courses, educational tools

can be leveraged effectively. The Progressive Learning Platform (PLP) is a

simulation and visualization tool that was designed for use in multiple computer

science and computer engineering courses. It allows students to visually inspect the

state of the machine (registers, memory locations, even buses and elements of the

datapath and control) for their programs at their own pace. This very different from

canned animations over which students have little control and no ownership. PLP

simulates not only CPU internals, but the I/O available on some standard

development boards like the Nexys 3 from Digilent. Additionally, the CPU itself is

a Verilog description that can be synthesized on the board, so that PLP can be tested

with real-time input and output, not just in simulation. Students can thus

experience user-input related timing issues that are often undetectable in simulations.

6 SUMMARY

Underlying hardware implementation details affect information security

solutions. Computer hardware design courses that included RSA encryption

examples showed the students the effects and limitations of hardware details upon

software programs. Additionally, digital computer simulation and instruction tools

are useful to teach the students how specific computer implementation limitations

(such as stack overflow) relate to information security problems. Basic hardware

design features (such as Intel’s SGX) provide tools for security aware software

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

17

implementations. The key thesis is that all hardware designers should be introduced

to information security implementation implications in much the same way they

are introduced to power, testing, and reliability concepts, that is by injecting security

examples into many different courses.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

18

REFERENCES

[1] William Hugh Murray: What the Graduate Needs to Know about Cryptography.
12th Colloquium for Information Systems Security Education University of Texas,
Dallas, TX June 2 - 4, 2008

[2] Li-Chiou Chen and Chienting Lin: Combining Theory with Practice in Information
Security Education. 11th Colloquium for Information Systems Security Education,
June 4-7 Boston University (2007)

[3] Barry S. Fagin, Leemon C. Baird, Jeffrey W. Humphries and Dino L. Schweitzer:
Teaching Information Security With Skepticism and Critical Thinking. 11th
Colloquium for Information Systems Security Education Boston University

[4] Rong Yang, Layne Wallace, Ian Burchett: Teaching Cryptology At All Levels Using
CrypTool. 15th Colloquium for Information Systems Security Education Fairborn,
Ohio June 13-15, 2011.

[5] D. Fritz, W. Mulia, S. Sohoni, “The Progressive Learning Platform”; Workshop on
Computer Architecture Education in conjunction with IEEE HPCA-17, San
Antonio, TX, February 2011.

[6] D. Fritz, W. Mulia, S. Sohoni, B. Gordon, K. Kearney, M. Mwavita, “The
Progressive Learning Platform for Computer Engineering”, Proc. 2011 American
Society for Engineering Education Annual Conference and Expo (ECE Division), pp
22.1491.1 - 22.1491.14, Vancouver, Canada, June 2011. https://peer.asee.org/18550.

[7] S. Sohoni, D. Fritz, W. Mulia, “Transforming a Microprocessors Course through the
Progressive Learning Platform”, Proc. the American Society for Engineering
Education Midwest Section, Russelville, AR, September 2011.

[8] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Comm. ACM 21(2) pp 120-126, 1978.

[9] B. Sadr, “Finding cases of ciphertext equal to plaintext in the RSA algorithm, MS
Thesis, Oklahoma State University, Stillwater OK, July 2011.

[10] R. R. Blakely and I. Borosh, “Rivest-Shamir-Adleman Public Key Cryptosystems
Do Not Always Conceal Messages,” Comp. & Maths, Vol5. Pp169-178.

[11] Andrzej Chmielowiec, “Fixed points of the RSA encryption algorithm,” In
Theoretical Computer Science, Volume 411, Issue 1, 2010, Pages 288-292,

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 2 - March 2019

19

[12] Mustafa Kocakulak and Turgay Temel, “Implementation of Special Cases for RSA
Algorithm Where Plaintext is Equal to ciphertext in Java,” ICENS, Sarajevo, May
2016.

[13] Alese, B. K., Philemon E. D., Falaki, S. O. “Comparative Analysis of Public-Key
Encryption Schemes” International Journal of Engineering and Technology Volume
2 No. 9, September, 2012

[14] Costan & Devadas, Intel SGX Explained, eprint 2016/086

[15] Andrew Baumann, Hardware is the new Software, Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, p.132-137, May 07-10, 2017,
Whistler, BC, Canada

[16] P. L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe, J. Lind, R.
Krahn, C. Fetzer, D. Eyers, and P. Pietzuch. TaLoS: Secure and Transparent TLS
Termination inside SGX Enclaves. Technical Report 2017/5, Imperial College
London, March 2017.

[17] Intel® Software Guard Extensions Tutorial Series: Part 1, Intel® SGX Foundation:
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-
part-1-foundation.

[18] Ben A. Fisch, Dhinakaran Vinayagamurthy, D.B.S.G.: Iron: Functional Encryption
using Intel SGX. Cryptology ePrint Archive, Report 2016/1071 (2016).

[19] Moritz Lipp, Michael Schwartz, Danidal Gruss, Thomas Prescher, Wiener Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval, Yarom, Mike Hamburg.
“Meltdown” Graz University of Technology, Cberus Technology GmBH,
University of Pennsylvania, University of Maryland, University of Adelaide, and
Rambut Cryptography research division. Cornell University Report:
arXiv:1801.01207 [cs.CR] 3 Jan 2018

[20] Jann Horn, “Reading privileged memory with a side channel”, Project Zero at
Google. https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html

[21] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Mortiz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, Yuval Yarom, “Specter
Attacks: Exploiting Speculative Execution” Universtiy of Pennsylvania, University of
Maryland, Graz University of Technology, Rambus, University of Adelaide. Cornell
University Report: arXiv:1801.01203v1 [cs.CR] 3 Jan 2018

