
Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

1

A Study of the Evolution of Secure Software
Development Architectures

Leah Winkfield
l.d.winkfield14051@spartans.nsu.edu

Yen-Hung Hu
yhu@nsu.edu

Mary Ann Hoppa
mahoppa@nsu.edu

Norfolk State University

Norfolk, Virginia, USA 23504

Abstract - Emerging technologies such as containers, microservices, DevOps, Agile software
development life cycle (SDLC), and cloud-native applications have gained popularity and
traction in the industry and among enterprises. These modern application technologies and
architectures are being adopted because they enable greater flexibility, scalability, portability
and more rapid development. Consequently, how to build and maintain secure applications
and systems is being reevaluated. Since the total responsibility is now larger and more complex,
the application developer role is expanding to include greater security obligations and concerns.
This paper explores the evolution of software development architectures and consequent
implications on security, to better understand the technology landscape driving this change and
its impacts on application development. To remain competitive, organization must be prepared
to invest in ongoing training of their developers in the latest best practices. To remain relevant,
higher education must adapt curriculums to prepare future professionals in the appropriate
cybersecurity and secure coding practices to match the development shifts observed in industry.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

2

Keywords

Secure Software Development, Agile SDLC, Container, Microservice, DevOps.

1 INTRODUCTION

Technologies such as the Internet of Things (IoT), social media and cloud

computing are both drivers and consequences of an increasingly connected world,

where software and computing interfaces are being integrated into even the most

basic daily interactions and environments. Along with all the benefits these

advancements contribute to society, comes an increasing number of software

security concerns and vulnerabilities.

The number of software vulnerabilities is growing by orders of magnitude.

Nearly 15,000 new vulnerabilities were discovered in 2017, up 128 percent from

the prior year. Of these, over half (56%) were caused by inappropriate program

codes such as arbitrary code execution, buffer overflow, SQL injection, Cross Site

Scripting (XSS), Cross-Site Request Forgery (CSRF), and file inclusion [1]. Since

the resources provided to mobile software development are limited compared to

traditional computer applications, we can expect this issue to become even more

serious as the demand for mobile apps continues to grow.

Considering potential damages that can result from these bad codes, the software

industry faces a formidable challenge when seeking mitigation approaches, among

them innovating software development frameworks, along with adopting and

improving the efficiency of better SDLCs. The underlying question is how software

developers can continue to encourage application innovation in ways that ensure

secured systems, inter-service communication and transactions. To serve as better

security stewards, developers must solidify themselves as competitively qualified

assets within their organizations, while at the same time influencing cultural and

technological standards from the bottom up.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

3

The remainder of this paper provides the motivation behind the whys and hows

of these changes, and is organized as follows: Section 2 presents trends in innovating

software development frameworks. Section 3 explains the need for adopting new

SDLCs. Section 4 describes several approaches for improving SDLC efficiencies.

Section 5 summarizes modern software development challenges and solutions.

Section 6 discusses the implications of shifting security concerns. Section 7

summarizes key points and hints at some future directions.

Timeframe
Architecture

paradigm

Security /

Deployment

Concerns

Environment

Effects

1970-1990

Monolithic

terminal server

systems

(mainframes)

Deploy once;

secure the

monolith

Transactional

enterprises (e.g.

banks, airlines,

hospitality)

1990’s

Client-server More nodes to

secure increases

the security

burden

Application logic

abstractions; rich

user interfaces

Early 2000’s

Thin client HTML forms

introduce new

vulnerabilities

High-latency;

poor performance

of JavaScript;

browser

incompatibilities

Mid-2000’s

SOA, web

toolkits

W3C standards

improved security;

but XML requires

Single-sign on is

an infrequently

realized ideal

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

4

Timeframe
Architecture

paradigm

Security /

Deployment

Concerns

Environment

Effects

special security

measures

2010

Purely JavaScript

frameworks

Rich, responsive,

client-side

experiences

interacting with

server-side data

via RESTful

backends

Strong testing

frameworks &

improved

JavaScript makes

security more

manageable

Present day

Micro-services,

containers

Full-stack

developers;

demand for client

applications and

real-time data

Ubiquitous

internet, mobile

devices, IoT

Table 1: Some Significant Paradigm Shifts in Software Development.

2 INNOVATING SOFTWARE DEVELOPMENT FRAMEWORKS

To keep pace with changes in the software industry, software development

frameworks have evolved through several states: from centralized to distributed

architectures; from dedicated hardware-software to virtualized systems; and from

infrastructure-oriented to platform-oriented services. Table 1 summarizes some

significant paradigm shifts in software development discussed in this section.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

5

2.1 Centralized vs. Distributed Architecture

During the 1970’s, 80’s and 90’s, monolithic terminal server systems (i.e.,

mainframes) ruled the world. In these systems, application logic was centralized,

while terminals simply displayed data and captured user input. Security and

deployment for the mainframe was relatively straightforward: no part of the

application resided on the client, so it was possible to deploy once and simply secure

the monolith. These systems were considered extremely fast and powerful at the

time, but the character-based terminal interface was slow and very limited by

current standards [2]. Today, many large enterprises still rely on mainframe

technology, especially highly transactional businesses such as banks, airlines, and the

hospitality industry. Only now – for security reasons – mainframes usually are

walled off from the Internet and accessed via an abstraction layer.

The successor to terminal server architecture came in the early 1990’s with the

introduction of client-server architecture [2]. Much of the application logic was

abstracted out to the client, which essentially rendered the mainframe a highly

efficient transactional database server for storing and sharing data between clients.

One benefit of this transition was more rich interfaces; but it also introduced its

share of challenges [3]. Deployments had to reach each individual client, and any

client could potentially be running incompatible operating systems (OS).

Standalone clients also increased the security burden, since there were more nodes

to secure.

The deployment complexity of early client-server architectures influenced the

shift to thin client architectures in the early 2000’s. The majority of application logic

was pulled back onto the server-side. This restored deployment simplicity, but also

reintroduced the original challenges associated with server-side call backs for every

client-side interaction. The growing accessibility of the Internet meant call back

latency in transactions had become even less tolerable [4]. Securing client-server

applications also was more complex due to vulnerabilities introduced by HTML

forms, the poor performance of early client-side JavaScript, and multi-browser

incompatibilities [2].

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

6

2.2 Dedicated Hardware – Software vs. Virtualized System

A dedicated hardware-software system is designed for a single customer running

a single OS. Before virtualization and cloud computing became popular, there was

only the concept of bare metal and single tenancy. Virtual machines (VMs) were

born out of the inability of most bare metal applications to take full advantage of

rapidly increasing processing power and capacity [5].

VMs add a layer of abstraction called a hypervisor on top of the host operating

system, making it independent of the underlying hardware resources. Each VM thus

can run its own unique OS alongside the other tenants, creating a multi-tenant

environment on a single server. Operating system virtualization “has grown in

popularity over the last decade as a means to enable software to run predictably and

well when moved from one server environment to another. Containers provide a

way to run these isolated systems on a single server/host OS” [5].

In contrast to dedicated hardware-software systems, VMs provide new usage

models (i.e., virtual environments) that benefit security in current systems. Some of

the security advantages are [6] [7] [8] [9] [10]:

 Transience: Dedicated hardware-software systems are always on, even
when they are not in use. In contrast, VMs are used on-demand, which
means they should be always in use and directly monitored at all times.
Therefore, users of VMs are more likely to detect malicious activities and
intrusions than users of dedicated hardware-software systems.

 Abstraction: The abstraction layer (i.e., hypervisor) of VMs provides
additional security. VMs do not know the hardware and OS configuration
details of their host machine, so compromising a guest VM gives the
attacker no immediate help in gaining access to the host machine’s
resources.

 Isolation: The hypervisor of a virtualized system reserves specific hardware
sources for each VM and allows them to run independently. This approach
restricts interactions among all VMs and reduces impact on the host OS
and other VMs when a VM is affected by an attack.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

7

 State Restoration: The hypervisor treats each VM image like a file on the
host OS, which means a VM’s state can be saved, cloned, moved,
encrypted, or restored as desired. In case a VM is affected by an attacker,
the hypervisor can restore the VM to a previous state by reloading its
snapshot. This provides some protection against data loss, as well as a
pathway to investigate attacks.

2.3 Infrastructure – Oriented vs. Platform – Oriented Services

The mid-2000’s witnessed significant advancements in browsers and web

tooling technologies that gave rise to more advanced client-side logic [2]. Adoption

of and compliance with World Wide Web Consortium (W3C) [11] standards

improved browser security. The introduction of the Google Web toolkit made rich

client architectures possible and more accessible to traditional Java developers.

Service-Oriented Architecture (SOA) [12] gained traction during this time too,

with the backing of a W3C recommendation [13]. An SOA is a software design

pattern in which application components provide services to other components via

network communication protocols. SOAs, such as Simple Object Access Protocol

(SOAP) [14] [15] are implemented with web services. This makes the functional

building-blocks of applications accessible over standard Internet protocols that are

platform and programming language agnostic.

An infrastructure-oriented service focuses on providing customized software

development services for clients (i.e., software developers) by taking advantage of

VM technology. In an Infrastructure-as-a-Service (IaaS) model – also known as

Hardware-as-a-Service (HaaS) – each client of the platform can have his own

software configuration on hardware that is virtualized and pre-configured based on

the service agreement. IaaS offers clients the flexibility to deploy their own guest

OS as well as all required applications. This enables them to take advantages of VM

technology without labor-intensive server management and/or hardware

investments. Advantages and disadvantages of VMs, described in the previous

section, also apply to IaaS. In addition, security patches and OS updates are still the

responsibility of each client.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

8

In a Platform-as-a-Service (PaaS) model, a client manages only the applications

he installs and configures; all other hardware and software, including the OS, are

pre-configured based on the service agreement. In this model, clients can spend

more time coding, testing, and deploying their applications without worrying about

managing OS updates and security patches. PaaS also provides tools and APIs that

enable clients to adopt new features and guidelines to support their software

development best practices. However, fully relying on the service provider for

underlying security implementations may introduce uncertainty and expose the

client to unacceptable risks. This suggests that clients should perform a thorough

investigation and assessment of security implementations for alternative PaaS

providers before making an investment decision, and ongoing auditing after

selection.

3 ADOPTING BETTER SDLC

As mobile technology advanced and demand increased, the software

development framework started moving from centralized to distributed

architectures. This change inherently requires reconsidering security assumptions

and practices that often are overlooked and/or undervalued by key enterprise

stakeholders – including those engaged in development, security, networking,

architecting, etc. – who likely have become accustomed to managing tiered

monolithic systems in ways that are no longer adequate in a distributed computing

context.

In contrast to the traditional and sequential Waterfall delivery cycle, new

philosophies enable speed to market by leveraging cross-functional teams, shorter

feedback loops, and iterative, continuous delivery. Agile Development is one such

example.

4 IMPROVING EFFICIENCY OF SDLC

Microservices architectures [16] [17] [18], container virtualization [19], and

DevOps [20] are among the solutions born to enable efficiencies in the SDLC.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

9

Microservices is a subset of SOAs [21] that describes “a method of developing

software applications as a suite of independently deployable, small, modular services

in which each service runs a unique process and communicates through a well-

defined, lightweight mechanism to serve a business goal” [16]. Microservices

applications offer several developmental, operational and security advantages. For

example, developers are able to create and deploy smaller incremental features or

application changes, without the burden of redeploying an entire application system.

Containers virtualize an underlying host’s OS and provide a resource-isolated

runtime environment [19]. Although containers have existed for quite some time,

Docker [22], an open-source technology company, recently increased their

popularity. Because they inherently enable portability, containers have played a

significant role in facilitating the migration of traditionally on-premise application

workloads to more distributed platforms, such as public cloud infrastructures.

DevOps is described as “the practice of operations and development engineers

participating together in the entire service lifecycle, from design through the

development process to production support” [20]. The principles and practices that

constitute the DevOps culture have been so widely adopted because, when

employed, they support and enable the goals of Agile Development. These

technologies represent industry solutions to technical challenges. When trends and

practices such as these gain popularity, enterprises scramble to leverage them for

innovation and positive organizational change.

Organizations who are eager to implement cutting edge technology and patterns

may too hastily adopt and attempt to implement microservices running on container

platforms, which can lead to significant challenges and failures. Unfortunately, some

observers have unfairly criticized microservices, containers, DevOps, and other

emergent principles and technologies for these shortfalls, rather than pointing the

finger at the organizations whose use of them have proven to be incomplete and

fault.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

10

5 MODERN SOFTWARE DEVELOPMENT SOLUTIONS AND

CONCERNS

Considering the technological shifts outlined above, it should be evident that

modern computing demands and requirements are outgrowing the limitations of

legacy infrastructure, architectures, patterns and languages. Enterprises are on a

course to failure if they are unable to quickly innovate and deliver to market, pivot

with agility, or scale elastically in response to industry trends and projections.

In fact, enterprises across all industries are wrestling with having to quickly make

critical cultural and technological decisions that impact every aspect of their business

regardless of whether they identify as a “tech company.” While they can still be

successful, monolithic and tiered systems are no longer ideal. The practice of

creating separate functional siloes (e.g., Operations, Development, Security,

Infrastructure), and horizontally stratifying application teams is now a hindrance to

enterprises realizing their business objectives. Meticulously designing applications

so they are dependent on the hardware and environments in which they run limits

flexibility and stifles innovation. Most importantly, security and governance

concerns are more complex, and can no longer remain responsibilities isolated to a

single security team operating independently of the SDLC.

5.1 Modern Software Development Solutions

With speed and agility being paramount to success, naturally solutions have

arisen to pursue these advantages. For example, some businesses that previously

operated their own on-premise data centers are now opting to partially or fully

outsource to cloud IaaS providers, so they can focus their attention on application

delivery. Among the platforms being used by businesses to scale and grow are

Amazon Web Services [23], Google Cloud Platform [24], and Microsoft Azure [25].

Software development strategy has been transitioned from infrastructure-based

to “-as-a-service” offerings [26], where each such offering provides a subset of the

computing layers grouped as a platform Platform-as-a-Service (PaaS) providers

include RedHat OpenShift [27], Pivotal CloudFoundry [28], and Heroku [29].

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

11

Similarly, home-grown software has given way to vendor managed/hosted products.

Software-as-a-Service (SaaS) refers to centrally hosted, on-demand software services

that may be licensed, subscription-based, or even free to use. Common Software-

as-a-Service providers are Gmail [30], Salesforce.com [29], and social media sites

such as Facebook [31].

Goals such as speed, agility, flexibility and portability often don’t align well with

traditional architecture patterns, organizational structures and delivery cadences. To

meet the speed of contemporary market demands and therefore remain competitive,

companies are adopting delivery and cultural philosophies such as Agile

Development and DevOps. Agile Development has taken the traditional waterfall

process and reduced the time-to-value by implementing iterative, compressed

delivery cycles. This results in shorter feedback loops, reduced risk, fast feature

delivery, and greater overall flexibility. DevOps attempts to align the competing

goals of developers who want to innovate and move software and products to the

market faster, and operations who prefer to keep things stable, so the two can join

forces and deliver greater value downstream.

When adhered to, these principles simultaneously address technology, culture,

process and organization, and their value comes from using them in combination.

These principles help to frame the various decisions that must be made when

building systems. Design informed by these principles is crucial, because although

microservices themselves may be small, the breadth and impact of their architectures

are not. Distributed architecture also raises new security challenges and concerns

such as service-to-service authorization and communication [32].

Regardless of architecture, an organization’s structure and culture is key to their

resilience and success. In fact, Conway’s Law states that “Any organization that

designs a system (defined more broadly here than just information systems) will

inevitably produce a design whose structure is a copy of the organization’s

communication structure” [33]. This is the motivation behind cultural frameworks

such as Agile and DevOps. To achieve speed to market, high availability, and rapid

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

12

innovation, the organization has to operate in a manner that reflects and supports

these goals.

5.2 Modern Software Development Concerns

Requiring authentication for every service call with SOAs was cumbersome due

to its intentionally decentralized nature and multidirectional data flows. A Single

Sign On (SSO) capability would be an ideal solution, “where a user's credentials are

promulgated throughout the Global Information Grid (GIG) to reach all desired

services;” but this implementation carries its own challenges [12].

Furthermore, Extensible Markup Language (XML) – which is used to format

some SOA application data – is “inherently insecure,” and as such special measures

must be taken to properly manage its vulnerabilities [12]. Nevertheless, enterprise

SOA implementations are prevalent, even today. It wasn’t until 2010 that

sophisticated, purely JavaScript frameworks such as Ember.JS, Backbone.JS, and

Angular.JS [34] [35] revolutionized the modern web by creating rich, responsive,

client-side experiences interacting with server-side data via RESTful backend

services [35].

Despite significant technological advancements and growing demand, there still

existed a great divide between traditional server side application developers and

“web” developers. It took some time to bridge that gap due to perceptions that

web languages – such as HTML and JavaScript – were less robust or simply used

for integration; and that front end developers were less skilled than their back end

counterparts. This naturally slowed adoption of rich client enterprise architectures,

but also gave birth to the Full-stack Application Developer role. These new

developers exhibit a breadth of familiarity and skill throughout the stack layers, and

are able to “build complex server-side web applications that use powerful relational

databases to persistently store data,” and to support multiple front ends [36].

Meanwhile, amid the ebbs and flows of change in the software world, substantial

shifts in the hardware landscape began to take shape. For one thing, smart phones

and other mobile devices increased digital communication, accessibility to the

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

13

Internet, lightweight programming languages, network traffic, demand for client

applications, and real-time data.

Microcontrollers, embedded processors, and wearable devices ushered in the

IoT era, which has added “smarts,” data streaming and connectivity to a myriad of

objects communicating over common protocols such as Zigbee [37], Wi-Fi,

Bluetooth, and Z-wave [38].

Computing devices have gotten smaller, faster, smarter and increasingly

ubiquitous. All these new endpoints, devices and modes of interaction have swelled

the data volume, whose boundaries and edges have to be secured and managed in

new ways.

6 THE IMPLICATIONS OF SHIFTING SECURITY CONCERNS

Traditional enterprise security is generally the responsibility of a single internal

security department comprised of a small group of Information Security (InfoSec)

professionals, and a “Red Team” for penetration testing, under the leadership of a

Chief Information Security Officer (CISO). Responsibilities and concerns usually

center around physical security, endpoint security, disaster recovery, content

filtering and phishing prevention, intrusion prevention and protection, incident

response and compliance.

Today, enterprises operate dozens to hundreds of application teams, running

thousands of applications. Mounting cybersecurity threats mean greater emphasis

must be placed on risk assessment, mitigation testing and approval, and external

attestation. The increasingly compressed timelines driven by modern delivery

frameworks only further compound the criticality and complexity of maintaining

adequately hardened systems. Security professionals went from managing one to

four software releases per year under traditional Waterfall delivery practices, to one

or two releases per month under early Agile cadences. And now with the advent of

modern Agile DevOps release cycles, the number of releases can easily soared to

100 or more annually.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

14

Traditional security teams and practices are no longer sufficient for the following

reasons:

 They intervene too late in the process to address most vulnerabilities.

 They move too slowly for today’s SDLC.

 They are not cost effective for handling simple vulnerabilities.

 It is difficult and costly to find, hire, and train InfoSec professionals.

 Such teams are hard to scale.

To adapt security practices to preventing, mitigating and responding to modern

threats and vulnerabilities, developers must play a more integral role; sharing

accountability with security teams helps integrate security into every part of the

SDLC, also referred to as “shifting security to the left.” The entire organization

benefits from having a more security-minded workforce. Teams experience less

waiting and better support since processes are decentralized and [eventually]

automated.

Focusing on improving the security conscience of the existing developer

community — rather than replacing them with outside hires who lack unfamiliarity

with the teams and products — is essential to the successful adoption of such a

holistic security culture. The organization must invest in training their developers

in new best practices. This will both improve the quality of their work products

and help them build and maintain competitive, industry-relevant skills.

Cultural change is difficult and resistance is likely. Leveraging one or two

respected development, security and operations “champions,” and/or multi-

discipline “champions” from each product team can be an effective strategy for

influencing the broader community. The goal is to evolve the shared view of

“security” away from the idea of an ominous, isolated enforcement team, and

towards a collective conscience of security and accountability.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

15

7 CONCLUSION

Speed and agility underpin success in the digital age. From a software

development perspective, a fundamental question is how to achieve secure

innovations at speed and scale, versus simply introducing more vulnerabilities into

systems even faster. To better understand the role of application developers in the

new security ecosystem, this paper explored the evolution of software development

architectures and consequent implications on security that have both resulted from

and driven SDLC framework innovation.

Increasingly compressed contemporary delivery timelines are requiring

significant shifts and changes in the SDLC, which can be at odds with system

stability and security. Developers are being called upon to play a more integral

security role, by “shifting security to the left” into every part of the SDLC, and by

sharing accountability with both the operations and security teams. Veracode and

DevOps.com recently conducted a survey to assess the state of cybersecurity and

DevOps skills in the workforce. Their findings highlight the fact that developers

today lack the formal education and skills they need to produce secure software at

the pace required; and moreover, relevant training sources are limited [39].

Along with committing to a number of significant changes in skills, culture,

technology and processes, organization must be prepared to invest in ongoing

training of their developers in the latest best practices. Higher education too must

adapt curriculums to prepare future professionals in the appropriate cybersecurity

and secure coding practices to match the skillsets required to meet development

shifts in industry.

As a first step in that direction, we are creating a framework to serve as a basis

for measuring an organization’s “readiness” to meet new SDLC demands based on

staff knowledge, skills and experiences in key areas of development, operations,

security and culture. Such a framework also will allow organizations to gauge where

to focus limited training resources and hiring efforts to remain competitive. Finally,

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

16

the framework can help academia establish and teach to relevant competency-facing

outcomes so students are better prepared to enter the workforce.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

17

REFERENCES

[1] “CVE Details,” [Online]. Available: https://www.cvedetails.com/.

[2] E. Muguet, “The evolution of business applications architecture,” 31 May 2015.
[Online]. Available: https://www.linkedin.com/pulse/evolution-business-
applications-architecture-eric.

[3] J. Chone, “The Five Software Architecture Generations: From Mainframe to Mobile
Apps to HTML5,” Brite Snow, 11 March 2013. [Online]. Available:
http://britesnow.com/blog/software-architecture-evolution-mobile-apps-to-html5.

[4] D. A. Foroughi, “Client-Server and Intranet Computing,” [Online]. Available:
http://www.usi.edu/business/aforough/cis367notesf2003/c367ch17.htm.

[5] K. Boeckman, “Docker containers vs. virtual machines: What’s the difference?”
NetApp Blog, 16 March 2016. [Online]. Available:
https://blog.netapp.com/blogs/containers-vs-vms.

[6] P. M. Chen and B. D. Noble, “When Virtual Is Better Than Real,” in Proceedings
of the 8th Workshop on Hot Topics in Operating Systems, 2001.

[7] D. Hyde, “A Survey on the Security of Virtual Machines,” [Online]. Available:
http://www.cse.wustl.edu/~jain/cse571-09/ftp/vmsec/index.html.

[8] J. S. Reuben, “A Survey on Virtual Machine Security,” in Security of the End Hosts
on the Internet Seminiar on the Network Security, 2007.

[9] T. Garfinkel and M. Rosenblum, “When Virtual is Harder than Real: Security
Challenges in Virtual Machine Based Computing Environments,” in Proceedings of
the 10th Workshop on Hot Topics in Operating Systems (HOTOS-X), Sante Fe,
NM, 2005.

[10] G. Pek, L. Buttyan and B. Bencasath, “A Survey of Security Issue in Hardware
Virtualization,” ACM Computing Surveys, vol. 45, no. 3, 2013.

[11] “W3C,” [Online]. Available: https://www.w3.org/.

[12] C. Phan, “Service Oriented Architecture (SOA) - Security Challenges and Mitigation
Strategies,” MILCOM 2007, Orlando, 2007.

[13] W3C, “Web Services Architecture,” 11 2 2004. [Online]. Available:
https://www.w3.org/TR/ws-arch/.

[14] “SOAP”" [Online]. Available: https://www.w3.org/TR/soap.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

18

[15] SimplyEasyLearning, “What is SOAP?” [Online]. Available:
https://www.tutorialspoint.com/soap/what_is_soap.htm.

[16] T. Huston, “What is Microservices Architecture?” SmartBear, [Online]. Available:
https://smartbear.com/learn/api-design/what-are-microservices/.

[17] M. F. James Lewis, “Microservices in a Nutshell,” ThoughtWorks, 27 June 2014.
[Online]. Available: https://www.thoughtworks.com/insights/blog/microservices-
nutshell.

[18] S. Newman, Building Microservices: Designing Fine-Grained Systems, O'Rielly,
2014.

[19] V. Badola, “Container Virtulization: what makes it work so well?” 27 October 2015.
[Online]. Available: https://cloudacademy.com/blog/container-virtualization/.

[20] E. Mueller, “What Is DevOps?” 2 August 2010. [Online]. Available:
https://theagileadmin.com/what-is-devops.

[21] D. Sprott and L. Wilkes, “Understanding Service-Oriented Architecture,” January
2004. [Online]. Available: https://msdn.microsoft.com/en-us/library/aa480021.aspx.

[22] Docker, “Home Page,” Docker, [Online]. Available: https://www.docker.com.

[23] Amazon, “Start Building on AWS Today,” Amazon, [Online]. Available:
https://aws.amazon.com.

[24] Google, "Build What's Next," Google, [Online]. Available:
https://cloud.google.com.

[25] Microsoft, “Your vision. Your cloud.” Microsoft, [Online]. Available:
https://azure.microsoft.com/en-us/?v=17.42n.

[26] J. M. Bond, “Who Manages Cloud IaaS, PaaS, and SaaS Services,” 19 June 2013.
[Online]. Available: https://mycloudblog7.wordpress.com/2013/06/19/who-
manages-cloud-iaas-paas-and-saas-services/#5ervices/.

[27] RedHat, “Develop, Deploy, and Manage Your Containers,” RedHat, [Online].
Available: https://www.openshift.com.

[28] “Cloud-Native Platform for Deploying and Operating Modern Applications,” Cloud
Foundtry, [Online]. Available: https://pivotal.io/platform.

[29] Safeforce, “Turn your company into an apps company,” Safeforce, [Online].
Available: www.heroku.com.

[30] Google, “Google,” Google, [Online]. Available: www.gmail.com.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 6, Issue 1 - September 2018

19

[31] Facebook, “Facebook,” Facebook, [Online]. Available: https://www.facebook.com.

[32] M. Fowler, “Microservice Trade-Offs,” 01 July 2015. [Online]. Available:
https://martinfowler.com/articles/microservice-trade-offs.html.

[33] F. Brooks, “Conway's Law,” [Online]. Available:
http://www.melconway.com/Home/Conways_Law.html.

[34] “JavaScript,” [Online]. Available: https://www.javascript.com/.

[35] SecureAuth, “AngularJS Best Practices Guide,” [Online]. Available:
https://www.secureauth.com/sites/default/files/angularjs_best_practices_guide.pdf.

[36] Udacity, “Full Stack Web Developer Nanodegree,” Udacity, [Online]. Available:
https://www.udacity.com/course/full-stack-web-developer-nanodegree--nd004.

[37] ZigBee Alliance, “Home Page,” [Online]. Available: http://www.zigbee.org/.

[38] R. Components, “11 Internet of Things (IoT) Protocols You Need to Know
About,” [Online]. Available: https://www.rs-online.com/designspark/eleven-
internet-of-things-iot-protocols-you-need-to-know-about.

[39] VERACODE, “Securing The Software That Powers Your World,” VERACODE,
[Online]. Available: https://www.veracode.com/.

