
Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

1

Assessing Java Coding Vulnerabilities in
Undergraduate Software Engineering

Education by Using Open Source
Vulnerability Analysis Tools

Yen-Hung Hu
yhu@nsu.edu

Thomas Kofi Annan

t.k.annan@spartans.nsu.edu

Department of Computer Science
Norfolk State University

Norfolk, Virginia

Abstract - Security and quality are two vital attributes of any software application no
matter how infinitesimal it might be. Tackling a software problem by its source is one of the
most trusted models used in problem solving approaches. In this paper, we want to ensure that
all undergraduate Java learners write codes based on the security and quality guidelines
expected in the industry right from the day they start learning “HelloWorld!” in Java. In the
research, sample codes getting from several Java books used in teaching Java concepts for
undergraduate courses were used as the case study. These sample codes were tested using an
open source tool developed based on security and quality guidelines. The tool determines the
vulnerability level in any Java code passed as an input to it then it analyzes the code and
generates a report indicating the threat level based on the vulnerabilities in the code. The results
of this paper will be published and authors of the selected books for the research will be notified
with those vulnerabilities in their source codes along with suggestions for fixing those
vulnerabilities.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

2

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms

Software and Vulnerability

Keywords

Security, Quality, Java, Vulnerability, Open Source

1. INTRODUCTION

The advances in technology and Internet connectivity, combined with ever

increasing number of threats and attacks, require software security and quality to be

integrated into the traditional verification and validation process. The report [1]

disclosed that there were 1,208 vulnerabilities discovered in 27 products of the top

50 portfolio and 76% of the vulnerabilities in the 50 most popular programs on

private PCs in 2013 were from third-party programs. In 2014, the NIST added

about 7900 new vulnerabilities into the National Vulnerability Database (NVD).

Of these, 24% were labeled high severity [2]. Fixing vulnerabilities before shipment

can no more be considered optional? Most of the reported software vulnerabilities

are leftovers forgotten by developers, thought to be benign codes. Such kind of

mistakes can survive unaudited for years until they end up exploited by hackers [3].

Software vulnerability is a threat to confidentiality, integrity and availability of

the information used or generated by software. This threat can only be limited if

coding standards are embedded as the core in every software development course

in undergraduate education. To deliver secure and quality software, vulnerabilities

must be identified in source code. With the phenomenal growth of the Internet, it

is imperative to test for the security and quality of software during its developmental

lifecycle and fix the vulnerabilities, if any is found, before deployment [4]. Software

security and quality deal with shielding software from hits by hackers, and ensures

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

3

that the software continues to work in spite of threats [5]. Many organizations

develop, run, and maintain numerous systems for which one or more security and

quality attributes (i.e., confidentiality, integrity, availability, authentication,

authorization, and non-repudiation) are of vital importance.

Software vulnerabilities are often the result of bad programming practices during

development. Some of these vulnerabilities are easily detected and fixed when the

program crashes or unexpected output is given. Others will never be noticed during

normal use. Automatic source code analyzers can help detect these vulnerabilities

before deployment of a software system. The design and implementation of such a

tool was the original idea of this paper but we ended up adopting an open source

version of what we wanted to develop. In choosing this tool, we considered

software security and quality assurance methodology, focusing on identifying and

correcting potential problems during the software development process as opposed

to patching broken systems in the production environment. Since the main focus is

churning out security and quality conscious Java programmers in undergraduate

programs, the tool will be used in testing most of the codes from the popular Java

books, known in the educational domain.

In this paper, we focus on testing for software vulnerabilities using source code

analysis (also invariably referred to as static code analysis). Static code analysis refers

to examining a piece of code without actually executing it. The technique of

evaluating software during its execution is referred to as run-time code analysis (also

called dynamic code analysis) – the other commonly used approach to test for

software vulnerabilities [4]. While dynamic code analysis is popularly used to test

for logical errors and stress test the software by running it in an environment with

limited resources, static or source code analysis has been the principal means to

evaluate the software with respect to functional, semantic and structural issues

including, but not limited to, type checking, style checking, program verification,

property checking and bug finding.

The remainder of this paper is organized as follows: Section 2 brings up our

motivation. Section 3 defines software security and quality standards in Java. Section

4 explains our Java source code analysis and discusses the research results. Section 5

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

4

concludes this paper and points out future work. Section 6 expresses our

recommendations.

2. MOTIVATION

Software security and quality deal with developing software with minimal to

zero flaws. Security and quality are essential to give verification, reliability,

accessibility and privacy. Software vulnerability can be seen as a flaw, a weakness,

or even an error in the system that can be exploited by an attacker in order to alter

the normal activity of the system. Because the number of software systems increases

everyday also the number of vulnerabilities. Additionally, if we consider that most

of the systems are exposed to multiple users (Internet) and environments (operating

systems for example) then it is just a matter of time that someone can launch an

attack (sequence of actions) whose consequences are unpredictable in damages and

cost [6].

Until recently, security and quality have been often considered as an

afterthought, and the bugs are mostly detected post-deployment through user

experiences and attacks reported. The bugs are controlled through patch code

(more formally called “updates”) that is quite often sent to customers via the

Internet. It is sometimes annoying to notice the icons with tagline “Security Alerts”,

“Updates are ready to be installed on your computer”, when someone has just gone

through a humongous waiting time for the most recent updates to be downloaded

and installed.

Software applications have become part of our everyday life, from embedded

devices to complex systems that control real time systems to nuclear reactors.

Security and quality in these applications and services cannot be overruled. Most

Software applications even though the original idea is to solve one particular

problem but will end up having more features as the application matures through

its growth life cycle. Every new added feature of any software comes with a

potential risk to the overall application lifecycle. In view of this change, security

and quality standards need to be established during the development cycle. Most

software’s are vulnerable not because the companies don’t follow security and

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

5

quality standards but rather the developers are not exposed to these standards early

enough during application development training stages. These stages can be self-

taught or a formal training from College if one happens to be a computer science

major or any discipline with programming module embedded. Undergraduates in

these domains need to be introduced to coding standards before and during the

entire training. In this paper, we will look at three main things:

1. Knowing the basics of software security and quality standards in Java,

2. Designing software with security and quality features and

3. Developing software based on security and quality standards.

3. SOFTWARE SECURITY AND QUALITY STANDARDS IN JAVA

Java [7] was chosen for this study because: it’s known to be secure compared to

other programming languages because of its whole architecture and implementation

of the Java virtual machine. Byte code verification is the backbone of the secure

nature of Java. Simplicity of Java is seen in its small language and smaller interpreter

but has rich set of libraries (i.e., API). It is fully object oriented by supporting

encapsulation, inheritance, abstraction and polymorphism. Libraries for networking

and remote method invocation make it more of a distributed system language,

which support enterprise applications in the industry. Portability, architectural

neutrality, multithreaded and dynamic nature of Java made it a language of choice

for our study.

3.1 Coding Quality Standard

Secure coding standards cannot be achieved if we ignore quality coding standard.

Main purpose of coding standards is to make code readable, understandable and

clean to all programmers including the original author of the code. Some of the

keys to code readability are [8]:

▪ Modularity: Code is broken into sections that are completely independent

of each other, so that you can understand a block of code without looking

at any other code.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

6

▪ Cohesion: All code for a given task is in one block, with no other code

intervening.

▪ Consistency: Code is written and formatted in a consistent manner, so that

it is easy to browse. You can see clear patterns in the structure and

indentation, so that you can quickly scan the code and find what you're

looking for.

Observing an implementation of these quality coding standards does not only

give you the benefits stated above but also prepares one to follow security

conventions in coding.

3.2 Java Security Guidelines

In here, we only introduce ten Java security guidelines because they are

particularly important for programmer and were selected in [9] [10] [11]. These

security guidelines when flouted will be at risk of breaching confidentiality, integrity

and availability that forms the core tenets of security principles in any domain. Key

factors of the guidelines are described below.

▪ Be aware of numeric promotion behavior: Numeric promotions are used

to convert mixed operands of an arithmetic operator to a common type

such that the operation can be performed. When using arithmetic

operators with mixed operand sizes, narrower operands will be promoted

to the type of wider operands.

▪ Use the Same data type for the second and third operands in conditional

expressions: In general, the form of a Java conditional expression can be

represented as operand_1 expression ? operand_2 expression: operand_3. It uses

the Boolean value of the first operand expression (operand_1) to

determine which of the other two operand expressions (operand_2,

operand_3) will be evaluated. If the first operand expression (operand_1) is

true, then the second operand expression (operand_2) is chosen. However,

the third operand expression (operand_3) will be chosen if the first

operand expression (operand_1) is false. Since the result of a conditional

expression is not constant due to its complicated rules, operands in the

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

7

second operand expression and those in the third operand expression

should have identical data types.

▪ Avoid inadvertent wrapping of loop counters: A while or for loop may

execute infinitely if the counter cannot reach its final value which is

defined inappropriately, or the predefined conditional expression cannot

be fulfilled.

▪ Strive for logical completeness: Logical incompleteness occurs when

programmers fail to consider all possible data states. This type of error may

lead the program to unexpected results if data states are not considered in

the predefined conditional expressions.

▪ Do not confuse abstract object equality with reference equality: Java uses

equality operators (i.e., == and !=) for testing reference equality but using

equals() method for testing object equality. Some programmers may

confuse the purpose of the == operation with that of the equals() method.

In general, the == operator checks whether two references refer to the

same object; in other words these two references refer to the same

memory address. The equals() method identifies whether two objects have

the same contents but may not be in the same memory address.

▪ Understand how escape characters are interpreted when strings are loaded:

Java allows escape sequences in character and string literals for certain

output format purposes. Correct use of escape sequences in string literals

requires understanding how the escape sequences are interpreted by the

Java compiler. Sometimes, there will be any subsequent processor such as

SQL engine involved in the Java code. In order to pass escape sequence

characters to the SQL engine correctly, an extra backslash (\) needs to be

added in front of the escape sequence characters. The implementations

involving with subsequent processors are complicated and should follow

the instructions associated with those processors carefully.

▪ Use a try-with-resources statement to safely handle closeable resources:

Java standard contains the try-with-resources code for safely handling

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

8

closeable resources. However, it must be implemented correctly to prevent

problems such as failing to close a resources because an exception is

thrown as a result of closing another resource or masking an important

exception when a resource is closed.

▪ Do not expose methods that use reduced-security checks to untrusted

code: In this guideline, any code that invokes methods using a reduced-

security check must guarantee that these methods will not be invoked as a

representative of untrusted codes. A reduced-security check method

checks only the calling method which is authorized rather than checking

every method in the call stack [9] [10] [11].

▪ Do not use the clone() method to copy untrusted method parameters: To

enhance Java security, clone() has been used to copy mutable method

parameters to mitigate potential security vulnerabilities. However,

inappropriate use of the clone() method can leave security vulnerabilities

that return unexpected results directed by attackers. For instance, attackers

can provide arguments that appear normal but eventually are objects of

malicious classes which extend from normal classes and override clone()

method with malicious codes to bypass or lessen input validation and

security checks. Several details on this issue have been studied in [11].

▪ Document thread-safety and use annotations where applicable: Two set of

Java language annotations including Java Concurrency in Practice (JCIP)

[12] and SureLogic [13] are available and useful for documenting design

intent with respect to thread-safety. For instance, JCIP provides three-class

level annotations for thread-safety. The @ThreadSafe denotes that no

sequences of accesses can leave the object in inconsistence state regardless

the interleaving of these accesses by the runtime or any external

synchronization or coordination on the part of the caller. The @Region

and @RegionLock annotations represent the locking policy upon which

the promise of thread-safety is predicated. [11].

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

9

4. JAVA SOURCE CODE ANALYSIS

Initial idea of this study was to develop a Java vulnerability analysis tool (see

Figure 1) to find bugs based on the Java security and quality guidelines.

Figure 1: Java Vulnerability Analysis Tool

The analysis tool will include four modules: Java Source/Byte Codes Feeder,

Java Security/Quality Guidelines Feeder, Java Vulnerability Analyzer and Java

Vulnerability Reporter. They are described below:

▪ Java Source/Byte Codes Feeder: This is the module that is able to attach

multiple Java source/byte codes and feed them into the Java Vulnerability

Analyzer. This module will conduct preliminary investigations to eliminate

inappropriate Java source/byte codes if existed.

▪ Java Vulnerability Analyzer: This module will analyze inputs from the Java

Source/Byte Codes Feeder and rules from the Java Security/Quality

Guidelines Feeder and generate outputs to the Java Vulnerability

Reporter. This module will be implemented with multi-thread technology

to improve the performance while multiple Java source/byte codes are

carried from the Java Source/Byte Codes Feeder. The outputs of this

module will include: potential vulnerabilities of each source/byte code

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

10

against the selected Java security/quality guidelines and suggested solutions

for these vulnerabilities.

▪ Java Security/Quality Guidelines Feeder: This module will be built based

on the adopted Java security and quality guidelines. The guidelines may be

varied because different implementations require different security and

quality measurements.

▪ Java Vulnerability Reporter: This module will summarize vulnerabilities of

each source/byte code and demonstrate potential solutions for them.

Meanwhile, it will accept the requests of generating different output file

formats.

4.1 FindBugs

After reading around it was discovered that there is an open source tool

FindBugs [15] that does almost what we needed to be implemented in our solution.

This tool detects potential errors in Java programs. Possible bugs are classified in

four ranks: (i) scariest, (ii) scary, (iii) troubling and (iv) of concern. This is a hint to

the developer about their possible impact of severity and quality [16].

FindBugs operates on Java byte code, rather than source code. The software is

distributed as a stand-alone GUI application. However, it can be also embedded

into several popular platforms [15]. All the sample codes were compiled under one

Java application name “BookNumber” in NetBeans integrated development

environment (IDE) [17] and an executable was generated as BookNumber.jar

which is Java archive. A new project was then created from the FindBugs from its

user interface and the jar file was passed to it through a file chooser. The

SampleCodes.jar was then analyzed with this tool.

4.2 Our Security and Quality Vulnerability Measurements vs Bugs FindBugs

FindBugs categorizes bugs into to 9 different categories: bad practice, correctness,

experimental, internationalization, malicious code vulnerability, multithreaded

correctness, performance, security, and dodgy code. In our measurement, 5

categories among them (i.e., bad practice, correctness, malicious code vulnerability,

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

11

multithreaded corrected, and security) will apparently affect software security and

all of them will affect software quality (see Table 1).

Our Measurements

Security Quality Bug in Findbugs in 9 categories

X X Bad Practice

X X Correctness

 X Experimental

 X Internationalization

X X Malicious Code Vulnerability

X X Multithreaded Correctness

 X Performance

X X Security

 X Dodgy Code

Table 1: The relationship between our security and quality vulnerability measurement and

categories of bugs in FindBugs

In the early stage of this research, instead of implementing our proposed tool,

we adopted FindBugs to check potential bugs in the sample codes. Although its

security and quality guidelines are not exactly equivalent to our proposed ones,

FindBugs can still provide us very much information that benefits to our next

research step: building our proposed Java vulnerability analysis tool.

4.3 Sample Codes

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

12

In this research, sample codes from popular Java books adopted during a normal

undergraduate Java class were used. They covered most of the entire concepts in

Java standard edition topics. Some of the codes are listed on [14].

4.4 Results from Analysis

In this research, we have fed the sample source codes from four different well-

known books in the development community and academia into the FindBugs and

examined their results (see Table 2).

Overall the FindBugs detected 345 bugs in the sample codes, out of these 22

were due to correctness, 50 bad practices, 39 internationalization, 82 performances,

2 securities and 149 Dodgy codes. Apparently, 74 bugs will affect software security,

and all of these 345 bugs will affect software quality (see Table 2).

Bugs in FindBugs Book 1 Book 2 Book 3 Book 4

Correctness 3 5 11 3

Bad practices 14 8 5 23

Security 0 0 1 1

Internationalization 13 6 11 9

Performance 13 16 41 12

Dodgy code 39 1 51 58

Total bugs 82 36 121 106

Table 2: Summary of bugs in each book

We then rewrote Table 2 to reflect our security and quality vulnerability

measurements (see Table 3).

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

13

Our Measurement Book 1 Book 2 Book 3 Book 4

Security Vulnerability 17 13 17 26

Quality Vulnerability 82 36 121 106

Table 3: Our security and quality vulnerability measurements of selected books

To help future developers, we specified bug pattern, description of the pattern

and recommendation for solving the bug in the first column and located sources of

the bug in the second column of Table 4 (in Appendix).

These results prompt us that instructors and authors must incorporate these

securities and best practices standards in their lessons and code samples at all times

to instill these principles to learners of programming languages. Also, online website

tutorials and forums needs to be advocate for these as well by checking against these

codes.

5. CONCLUSIONS

In this paper, we studied Java security and quality guidelines, proposed a Java

vulnerability analysis tool and investigated vulnerabilities in the sample source codes.

In the early stage of this research, we adopted FindBugs to examine the sample

source codes. We identified their patterns, described the reasons, and addressed our

recommendations. The research results indicated there are many common bugs in

the sample source codes, which also raise the security concerns, listed on the Java

security guidelines and will need further studies. In the next step of this research,

we plan to build our own analysis tool, involve more sample source codes and

design our own security and quality enhanced curricula for undergraduate software

engineering education. Online programming tutorials site and forums needs to be

advocates for such secure and quality coding practices as well.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

14

6. RECOMMENDATIONS

Learners of any programming language are the future of that language in which

Java is not an exception, in view of that instructor from every institution should try

as much as possible to instill and be advocate secure code practices for their students

by ensuring that the materials they use have embedded these secure and quality

coding practices in all the source of information and also their sample codes as well.

Furthermore, the instructors must ensure that student are very conscious about

them in their code submission for all coding assignments and quizzes.

Authors of programming books are the main source of information for beginners

and professionals of any programming language, they should play a part by adopting

security and quality first before concept in writings and dissemination of knowledge

in the books and documents. All authors can form a coalition to ensure other

members of the group follow those security and quality guidelines needed to be

shared with the learners at all times.

Online resources and code sharing websites like stack overflow needs to be

proponent of these security and quality guidelines by having a third-party code

pasting editor with security and quality analysis capability, which will share

vulnerabilities in any code pasted with that editor. In the future version of this

research will propose that such a tool will be developed and shared among the

coding community as well as educational institutions.

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

15

REFERENCES

[1] Secunia Vulnerability Review 2014, February 2014,
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2014.pdf
.

[2] Dorothy E. Denning, “Privacy and security: Toward More Secure Software”,
Communications of the ACM, Vol. 58 No. 4, Pages 24-26, April 2015.

[3] Marco Guarnieri, Paul El Khoury and Gabriel Serme “Security vulnerabilities
detection and protection using Eclipse”, in Proceeding of ECLIPSE-IT 2011, 6th
Workshop of the Italian Eclipse Community, September 22-23, 2011, Milano, Italy.

[4] Natarajan Meghanathan, “Identification and Removal of Software Security
Vulnerabilities using Source Code Analysis: A Case Study on a Java File Writer
Program with Password Validation Features”, International Journal of Network
Security & Its Applications (IJNSA), Vol.5, No.1, January 2013.

[5] K. P. Lavanya1, B. Vishwanatha1 and Anirban Basu1, “Detection and Correction of
Software Vulnerabilities in Java Code”, International Journal of Current Research in
Science and Technology, Volume 1, Issue 7, Pages 19-27, 2015.

[6] Willy Jimenez, Amel Mammar and Ana Cavalli, “Software Vulnerabilities, Prevention
and Detection Methods: A Review”, in Proceeding of SEC-MDA workshop, 24-
June 2009, Enschede, The Netherlands.

[7] Oracle, “Introduction to Java Platform, Enterprise Edition 7”, Oracle White Paper,
June 2013. http://www.oracle.com/technetwork/java/javaee/javaee7-whitepaper-
1956203.pdf

[8] Lecture note of CS315 Computer Organization and Assembly Language
Programming, Department of Computer Science, University of Wisconsin -
Milwaukee,
http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch07.html

[9] SEI, CMU, “Top 10 Coding Guidelines for Java”,
http://www.sei.cmu.edu/news/article.cfm?assetid=77817.

[10] Fred Long, Dhruv Mohindra, Robert Seacord, Dean F. Sutherland, David Svoboda,
Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs,
Addison-Wesley Professional, Aug. 30, 2013.

[11] SEI, CMU, “SEI CERT Oracle Coding Standard for Java”,
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+C
oding+Standard+for+Java

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

16

[12] Goetz, Brian, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug
Lea. Java Concurrency in Practice. Boston: Addison-Wesley Professional, 2006.

[13] SureLogic, http://surelogic.com/

[14] Link to sample codes https://github.com/thomaskofiannan/SampleCodes

[15] FindBugs - Find Bugs in Java Programs, http://findbugs.sourceforge.net/

[16] https://en.wikipedia.org/wiki/FindBugs

[17] NetBeans IDE, https://netbeans.org

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

17

APPENDIX

Bugs Source in Code Book 1

Pattern: Array index is out of
bounds

Recommendation: Array operation
is performed, but array index is out
of bounds, which will result in
ArrayIndexOutOfBoundsExceptio
n at runtime.

Try {

 if (a == 1) a = a / (a - a);

 if (a == 2) {

 int c[] = {1};

 c[42] = 99;

}

Pattern: Comparison of String
objects using == or !=

Recommendation: This code
compares java.lang.String objects
for reference equality using the ==
or != operators. Unless both strings
are either constants in a source file,
or have been interned using the
String.intern() method, the same
string value may be represented by
two different String objects.
Consider using the equals(Object)
method instead.

System.out.println(s1 + " == " + s2 + " -> "

+ (s1 == s2));

Pattern: Rough value of known
constant found

Recommendation: It's
recommended to use the
predefined library constant for code
clarity and better precision.

pi = 3.1416;

a = pi * r * r;

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

18

Bugs Source in Code Book 1

Pattern: Consider using Locale
parameterized version of invoked
method

Recommendation: A String is
being converted to upper or
lowercase, using the platform's
default encoding. This may result
in improper conversions when
used with international characters.
Use these two instead.

String.toUpperCase
(Locale l)

String.toLowerCase
(Locale l)

String upper = s.toUpperCase();

String lower = s.toLowerCase();

Pattern: Reliance on default
encoding

Recommendation: Found a call to
a method which will perform a
byte to String (or String to byte)
conversion, and will assume that
the default platform encoding is
suitable. This will cause the
application behaviour to vary
between platforms. Use an
alternative API and specify a
charset name or Charset object
explicitly.

byte buf[] = str.getBytes();

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

19

Bugs Source in Code Book 1

Pattern: Use the nextInt method of
Random rather than nextDouble
to generate a random integer

Recommendation: If r is a
java.util.Random, you can
generate a random number from 0
to n-1 using r.nextInt(n), rather
than using (int)(r.nextDouble() *
n). The argument to nextInt must
be positive. If, for example, you
want to generate a random value
from -99 to 0, use -r.nextInt(100).

int prob = (int) (100 * rand.nextDouble());

Pattern: Method invokes inefficient
new String(String) constructor

Recommendation: Using the
java.lang.String(String) constructor
wastes memory because the object
so constructed will be functionally
indistinguishable from the String
passed as a parameter. Just use the
argument String directly.

String s2 = new String(s1);

Pattern: Inefficient use of keySet
iterator instead of entrySet iterator

Recommendation: This method
accesses the value of a Map entry,
using a key that was retrieved from
a keySet iterator. It is more
efficient to use an iterator on the
entrySet of the map, to avoid the
Map.get(key) lookup.

Iterator<String> itr = set.iterator();

while(itr.hasNext()) {

 str = itr.next();

System.out.println(str + ": " +

 balance.get(str));

}

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

20

Bugs Source in Code Book 1

Pattern: Method invokes inefficient
floating-point Number
constructor; use static valueOf
instead

Recommendation: Using new
Double(double) is guaranteed to
always result in a new object
whereas Double.valueOf(double)
allows caching of values to be done
by the compiler, class library, or
JVM. Using of cached values
avoids object allocation and the
code will be faster. Unless the class
must be compatible with JVMs
predating Java 1.5, use either
autoboxing or the valueOf()
method when creating instances of
Double and Float.

TreeMap<String, Double> tm = new

 TreeMap<String, Double>();

tm.put("John Doe", new Double(3434.34));

Pattern: Unsigned right shift cast to
short/byte

Recommendation: The code
performs an unsigned right shift,
whose result is then cast to a short
or byte, which discards the upper
bits of the result. Since the upper
bits are discarded, there may be no
difference between a signed and
unsigned right shift (depending
upon the size of the shift).

byte d = (byte) (b >>> 4);

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

21

Bugs Source in Code Book 1

Pattern: Integral division result cast
to double or float

Recommendation: This code casts
the result of an integral division
(e.g., int or long division)
operation to double or float. Doing
division on integers truncates the
result to the integer value closest to
zero. The fact that the result was
cast to double suggests that this
precision should have been
retained. What was probably meant
was to cast one or both of the
operands to double before
performing the division. Here is an
example:

 int x = 2;

 int y = 5;

 // Wrong: yields result 0.0

 double value1 = x / y;

 // Right: yields result 0.4

 double value2 = x / (double) y;

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

22

Bugs Source in Code Book 1

Pattern: Dead store to local
variable

Recommendation: This instruction
assigns a value to a local variable,
but the value is not read or used in
any subsequent instruction. Often,
this indicates an error, because the
value computed is never used.

Note that Sun's javac compiler
often generates dead stores for final
local variables. Because FindBugs is
a byte code-based tool, there is no
easy way to eliminate these false
positives.

public class CallingCons {

 public static void main(String args[]) {

 C c = new C();

 Protection2 ob1 = new Protection2();

 OtherPackage ob2 = new

 OtherPackage();

 }

}

Pattern: Code contains a hard
coded reference to an absolute
pathname

Recommendation: This code
constructs a File object using a hard
coded to an absolute pathname
(e.g., new
File("/home/dannyc/workspace/j2
ee/src/share/com/sun/enterprise/d
eployment");

try (FileInputStream f = new

FileInputStream("C:\\Users\\User\\Desktop

\\FileInputStreamDemo.java")) {}

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

23

Bugs Source in Code Book 1

Pattern: Dereference of the result
of readLine() without nullcheck

Recommendation: The result of
invoking readLine() is dereferenced
without checking to see if the
result is null. If there are no more
lines of text to read, readLine() will
return null and dereferencing that
will generate a null pointer
exception.

number = br.readLine();

ht.put(name, number);

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

24

Bugs Source in Code Book 1

Pattern: Switch statement found
where default case is missing. This
method contains a switch statement
where default case is missing.
Usually you need to provide a
default case.

Recommendation: Because the
analysis only looks at the generated
byte code, this warning can be
incorrect triggered if the default
case is at the end of the switch
statement and the switch statement
doesn't contain break statements
for other cases.

switch (result) {

 case NO:

 System.out.println("No");

 break;

 case YES:

 System.out.println("Yes");

 break;

 case MAYBE:

 System.out.println("Maybe");

 break;

 case LATER:

 System.out.println("Later");

 break;

 case SOON:

 System.out.println("Soon");

 break;

 case NEVER:

 System.out.println("Never");

 break;

}

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

25

Bugs Source in Code Book 2

Pattern: Bad attempt to compute
absolute value of signed random
integer

Recommendation: This code
generates a random signed integer
and then computes the absolute
value of that random integer. If the
number returned by the random
number generator is
Integer.MIN_VALUE, then the
result will be negative as well (since
Math.abs(Integer.MIN_VALUE)
== Integer.MIN_VALUE). (Same
problem raised for long values as
well).

radius = Math.abs(generator.nextInt())%50 +

25;

Pattern: Method call passes null for
non-null parameter

Recommendation: This method
call passes a null value for a non-
null method parameter. Either the
parameter is annotated as a
parameter that should always be
non-null, or analysis has shown
that it will always be dereferenced.

music[6] = JApplet.newAudioClip(url6);

Pattern: Method might ignore
exception

Recommendation: This method
might ignore an exception. In
general, exceptions should be
handled or reported in some way,
or they should be thrown out of
the method.

catch (Exception exception) {}

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

26

Bugs Source in Code Book 2

Pattern: Certain swing methods
needs to be invoked in Swing
thread

Recommendation: (From JDC
Tech Tip): The Swing methods
show(), setVisible(), and pack() will
create the associated peer for the
frame. With the creation of the
peer, the system creates the event
dispatch thread. This makes things
problematic because the event
dispatch thread could be notifying
listeners while pack and validate are
still processing. This situation could
result in two threads going through
the Swing component-based GUI
-- it's a serious flaw that could
result in deadlocks or other related
threading issues. A pack call causes
components to be realized. As they
are being realized (that is, not
necessarily visible), they could
trigger listener notification on the
event dispatch thread.

JFrame frame = new JFrame("Java Juke

Box");

frame.pack();

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

27

Bugs Source in Code Book 2

Pattern: Method concatenates
strings using + in a loop

Recommendation: The method
seems to be building a String using
concatenation in a loop. In each
iteration, the String is converted to
a StringBuffer/StringBuilder,
appended to, and converted back
to a String. This can lead to a cost
quadratic in the number of
iterations, as the growing string is
recopied in each iteration.

Better performance can be
obtained by using a StringBuffer
(or StringBuilder in Java 1.5)
explicitly.

For example:

 // This is bad

 String s = "";

 for (int i = 0; i < field.length;
++i) {

 s = s + field[i];

 }

String contents = "\nShopping Cart\n";

contents += "\nItem\t\tUnit

 Price\tQuantity\tTotal\n";

for (int i = 0; i < itemCount; i++)

 contents += cart[i].toString() + "\n";

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

28

Bugs Source in Code Book 3

Pattern: instanceof will always
return false

Recommendation: This instanceof
test will always return false.
Although this is safe, make sure it
isn't an indication of some
misunderstanding or some other
logic error.

Employee employee1 = new Employee();

SalaryEmployee employee2 = new

SalaryEmployee();

System.out.println("Employee1 is a

 SalaryEmployee: " + (employee1

instanceof

SalaryEmployee));

Pattern: A parameter is dead upon
entry to a method but overwritten

Recommendation: The initial
value of this parameter is ignored,
and the parameter is overwritten
here. This often indicates a
mistaken belief that the write to
the parameter will be conveyed
back to the caller.

Length of arr2: " + arr2.length);

private static void changeArray(int arr[]) {

 arr = new int[100];

 System.out.println("Length of arr: " +

 arr.length);

}

Pattern: Method may fail to close
stream

Recommendation: The method
creates an IO stream object, does
not assign it to any fields, pass it to
other methods that might close it,
or return it, and does not appear to
close the stream on all paths out of
the method. This may result in a
file descriptor leak. It is generally a
good idea to use a finally block to
ensure that streams are closed.

FileReader fileReader = new

FileReader(file);

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

29

Bugs Source in Code Book 3

Pattern: Boxing/unboxing to parse
a primitive

Recommendation: A boxed
primitive is created from a String,
just to extract the unboxed
primitive value. It is more efficient
to just call the static parseXXX
method.

int num1 =

 Integer.valueOf("540").intValue();

Pattern: Hardcoded constant
database password

Recommendation: This code
creates a database connect using a
hardcoded, constant password.
Anyone with access to either the
source code or the compiled code
can easily learn the password.

try (Connection connection =

 DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/",

 "root", "explore");

Pattern: Call to equals(null)

Recommendation: This method
calls equals(Object), passing a null
value as the argument. According
to the contract of the equals()
method, this call should always
return false.

Item item4 = null;

System.out.println("item1 equals item4: " +

 item1.equals(item4));

Pattern: Hardcoded constant
database password

Recommendation: This code
creates a database connect using a
hardcoded, constant password.
Anyone with access to either the
source code or the compiled code
can easily learn the password.

Connection con =

DriverManager.getConnection(

"jdbc:derby://localhost:1527/contact",

"userName", "password");

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

30

Bugs Source in Code Book 3

Pattern: Method may fail to close
database resource

Recommendation: The method
creates a database resource (such as
a database connection or row set),
does not assign it to any fields, pass
it to other methods, or return it,
and does not appear to close the
object on all paths out of the
method. Failure to close database
resources on all paths out of a
method may result in poor
performance, and could cause the
application to have problems
communicating with the database.

try {

Connection con =

DriverManager.getConnection(

 "jdbc:derby://localhost:1527/contact",

 "userName", "password");

 System.out.println("Schema: " +

 con.getSchema());

 DatabaseMetaData metaData =

 con.getMetaData();

 System.out.println("Auto Generated

 Keys: " +

metaData.generatedKeyAlwaysReturned());

} catch (SQLException ex) {

 ex.printStackTrace();

}

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

31

Bugs Source in Code Book 3

Pattern: Class implements same
interface as superclass

Recommendation: This class
declares that it implements an
interface that is also implemented
by a superclass. This is redundant
because once a superclass
implements an interface, all
subclasses by default also
implement this interface. It may
point out that the inheritance
hierarchy has changed since this
class was created, and consideration
should be given to the ownership
of the interface's implementation.

private static class Player extends Entity

implements Runnable {

 @Override

 public String toString() {

 return "Player #" + id;

 }

}

Bugs Source in Code Book 4

Pattern: Call to equals(null)

Recommendation: This method
calls equals(Object), passing a null
value as the argument. According
to the contract of the equals()
method, this call should always
return false.

Item item4 = null;

System.out.println("item1 equals item4: " +

 item1.equals(item4));

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

32

Bugs Source in Code Book 4

Pattern: Hardcoded constant
database password

Recommendation: This code
creates a database connect using a
hardcoded, constant password.
Anyone with access to either the
source code or the compiled code
can easily learn the password.

Connection con =

DriverManager.getConnection(

"jdbc:derby://localhost:1527/contact",

"userName", "password");

Pattern: Method may fail to close
database resource

Recommendation: The method
creates a database resource (such as
a database connection or row set),
does not assign it to any fields, pass
it to other methods, or return it,
and does not appear to close the
object on all paths out of the
method. Failure to close database
resources on all paths out of a
method may result in poor
performance, and could cause the
application to have problems
communicating with the database.

try {

Connection con =

DriverManager.getConnection(

 "jdbc:derby://localhost:1527/contact",

 "userName", "password");

 System.out.println("Schema: " +

 con.getSchema());

 DatabaseMetaData metaData =

 con.getMetaData();

 System.out.println("Auto Generated

 Keys: " +

metaData.generatedKeyAlwaysReturned());

} catch (SQLException ex) {

 ex.printStackTrace();

}

Journal of The Colloquium for Information System Security Education (CISSE)
Edition 4, Issue 2 - February 2017

33

Bugs Source in Code Book 4

Pattern: Class implements same
interface as superclass

Recommendation: This class
declares that it implements an
interface that is also implemented
by a superclass. This is redundant
because once a superclass
implements an interface, all
subclasses by default also
implement this interface. It may
point out that the inheritance
hierarchy has changed since this
class was created, and consideration
should be given to the ownership
of the interface's implementation.

private static class Player extends Entity

implements Runnable {

 @Override

 public String toString() {

 return "Player #" + id;

 }

}

Table 4: Bug patterns and source codes of those bugs in each book and recommendations for
fixing them

