
The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

1

Teaching Undergraduates Certified Security
by Design

Shiu-Kai Chin
Department of Electrical Engineering & Computer Science

Syracuse University

Abstract - Design for assurance of security, from the hardware level on up, is essential for
securing the integrity of the smart cyber-physical infrastructure that is the Internet of Things.
If the smart cyber-physical infrastructure fails to do the right things—that is, if it loses integrity
because it is insecure and vulnerable—then untold social consequences will occur. For the
security and integrity of cyber-physical systems to improve, not only must engineers and
computer scientists possess the capability to design-in security from the very beginning, but
they must do so in ways that enable people other than the designers to reproduce and check
verification results easily and quickly. Designers and certifiers must formally describe and verify
operations at high levels, such as the command-and-control (C2) protocols used by commanders
and operators, down to the operations of applications and hardware. We call this design and
verification capability for security and integrity certified security by design (CSBD). Our
experience leads us to conclude that CSBD is feasible and practical for undergraduates. What
makes CSBD feasible at the undergraduate level is similar to what made very large scale
integrated (VLSI) circuit design feasible in the 1980s: (1) rigorous, simplified, and
parameterized design and analytical methods spanning multiple levels of abstraction, and (2)
computer-aided design and verification tools to mitigate complexity and problems of scale.

Keywords: assurance, computer security, formal verification, integrity, undergraduate education

1. INTRODUCTION

“It is not easy to make a computer system secure, but neither is it

impossible. The greatest error is to ignore the problem.”

– Roger Schell (Schell, 1979)

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

2

Computer engineering and computer science faculty are responsible for

educating the next generation of engineers and scientists capable of routinely

producing the next generation of trustworthy cyber-physical systems upon which

society depends. The BS degrees in computer engineering and computer science

define the baseline capabilities of the computer engineering and computer science

professions. For assured security and integrity to permeate cyber-physical systems

and the Internet of Things (IoT), undergraduate programs must routinely teach

secure system design and verification.

This paper describes an educational approach to certified security by design (CSBD)

at the undergraduate level. Our hope is others will use, modify, or extend our

methods so that the number of engineers and computer scientists capable of

designing, verifying, implementing, and procuring secure systems will increase

dramatically to meet the growing need for secure systems.

As Roger Schell notes in (Schell, 1979), designing secure systems is hard but not

impossible. Despite the daunting appearance of having to describe and verify secure

systems from command-and-control (C2) protocols down to hardware, as educators

we cannot perpetuate the continuing insecurity of critical infrastructure by failing

to equip future engineers and computer scientists with the capabilities they need to

design secure systems.

This is not the first time our profession has risen to the challenge of integrated

system design spanning multiple levels of abstraction from high-level descriptions

of behavior down to low-level implementations. Incorporating very large scale

integrated (VLSI) system design into academic programs in the 1980s was a huge

success. Doing so created the technology and engineering workforce necessary for

today's IoT. Our experience is that CSBD is feasible within current programs of

study in engineering and computer science.

The rest of this paper is organized as follows. Section 2 gives an overview of the

historical lessons of the VLSI revolution. Section 3 outlines our approach to CSBD

with the lessons of VLSI in mind. Section 4 describes lessons learned from teaching

undergraduates. We conclude in Section 5.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

3

2. HISTORICAL LESSONS

“The transparency of the new methods enabled architects to design

systems from top-to-bottom.”

– Lynn Conway (Conway, 2012)

The VLSI Revolution: In the 1970s, the idea that designers working at the

instruction-set architecture (ISA) level could realize their designs as custom VLSI

circuits was viewed as practically impossible. Circuit design at the semiconductor

level involved specialized knowledge of transistors, layouts, and sets of minimum

dimensions for layout features, e.g., minimum sizes of transistors and metal

interconnects. The combined amount of knowledge needed to do digital design

spanning the architecture, logic, transistor, and layout levels was viewed as too

much for a single person to grasp.

Forty years later, undergraduate engineering and computer science students

routinely span design at the architecture, logic, transistor, and layout levels in their

classes. How and why this happened is instructive for those interested in designing

secure systems from the hardware level up to and including the missions and

applications they support.

Lynn Conway and Carver Mead are credited for the VLSI system design

methodology that enables today's students to do what was thought to be impossible

in the 1970s. Conway's inspiration was Steinmetz's development of AC electrical

system design, as reported in (Conway, 2012).

“[T]he emerging AC concepts seemed mysterious, even to expert

practitioners, who as yet had no formal theories to develop AC

technology. Steinmetz had broken the logjam by coalescing

mathematical methods and design examples that enabled practicing

engineers to routinely design AC electrical systems with predictable

results. This starter set of knowledge was sufficient to launch the AC

revolution. By applying Steinmetz's principles, practicing engineers

spawned a whole new industry.”

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

4

Conway's insight was simplifying design by finding a “minimalist set of methods”

spanning system architecture down to circuit layouts, while discarding everything

else, (Conway, 2012).

“This wasn't about engineering new things; it was about the

engineering of new knowledge. My key idea was to sidestep tons of

accumulated vestigial practices in system architecture, logic design,

circuit design and circuit layout, and replace them with a coherent but

minimalist set of methods sufficient to do any digital design –

restructuring the levels of abstraction themselves to be appropriate for

MOS-LSI [metal oxide semiconductor-large scale integration].

I theorized that if such a starter set could be composed, it would

enable thousands of system designers to quickly migrate from TTL

[transistor-transistor logic] into MOS-LSI … We should … create a

simplified methodology for designing whole systems in silicon, not just

circuits – and aim it specifically at computer architects and system

designers.”

The simplifications introduced by Conway enabled computer architects to do

meaningful design at lower levels of abstraction down to the layout level while

preserving logical rigor.

Lessons Learned for Certified Security by Design from the VLSI revolution are

these:

1) Focus on simplifications that enable security to be described and preserved across multiple

levels of abstraction. (a) Coalesce mathematical methods and design examples to

enable practicing engineers to routinely design secure systems with predictable

results. (b) Attain simplicity and rigor by formally describing and defining the

ideal behavior of components. For Conway it was transistors. For security, it

includes cryptographic operations. (c) Use parameterization as a means to

achieve simplicity and time durability.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

5

2) Computer-Aided Design (CAD) tools are essential for realizing any security

by design methodology.

With these lessons in mind, next is an overview of our Certified Security by

Design (CSBD) approach.

3. CERTIFIED SECURITY BY DESIGN SCOPE OF RESPONSE TO

NOTICE OF PROPOSED RULEMAKING

“Every access to every object must be checked for authority... A

foolproof method of identifying the source of every request must be

devised.”– Jerome Saltzer and Michael Schroeder (Saltzer &

Schroeder, 1975)

A Motivating Command-and-Control Example: To illustrate our CSBD

approach and the requirements for security assurance, we work through a simple

command-and-control scenario (SC2S) as shown in Figure 1. The top-level

description of the SC2S C2 protocol is a ladder diagram showing the sequence of

commands and messages sent among the principals Commander, Operator, and

Application in Figure 1(a). The Commander gives the go command; the Operator in

response issues the launch command to the Application; the Application confirms it is

active by responding with on to the Operator.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

6

Figure 1: A Simple Command-and-Control Scenario (SC2S)

Figure 1(b), with the following description, refines the top-level description and

gives additional details related to authentication and authorization.

1) Alice, in the role of Commander, gives the go command to Bob, who

functions as an Operator.

2) Bob recognizes that the Commander has the authority to give the go command.

He also knows that Alice is the Commander. The policy given to Operators is

when they receive the go command, they should launch the application for

which they are responsible. In Bob's case it is Applicationn.

3) When Applicationn receives a launch command from an Operator, in this case

Bob, it activates, i.e., moves into the active state.

4) To secure integrity, cryptographic operations, such as digital signatures, are

used to authenticate all commands. Principals, such as staff, are associated with

cryptographic keys.

Except for the reference to the use of cryptographic operations and digital

signatures, the means for authentication and authorization are not explicitly defined.

Assurance Requirements: Even though the SC2S is a simple example, it requires

the following tools and methods to maintain a formal and verifiable thread of

consistency, accountability, and security to assure (1) all commands are

authenticated and authorized, and (2) all actions are justified.

▪ A C2 calculus for describing and justifying actions, commands, or
statements made within the context of jurisdiction of authority,
delegations, tokens or symbols of identity or authority, policies, privileges,
certifications (i.e., signed statements), and trust assumptions (e.g., root
cryptographic keys, assumed jurisdictions). We use a calculus (S. Chin &
Older, 2010) based on an access-control calculus for distributed systems
(Abadi, Burrows, Lampson, & Plotkin, 1993).

▪ Computer-assisted reasoning tools to check all proofs and assurance claims,
and enable rapid reproduction and formal verification of all results by third

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

7

parties and certifiers. We use the Cambridge University Higher Order
Logic (HOL) theorem prover (Gordon & Melham, 1993).

▪ A library of cryptographic operations and their properties to reason about
authentication

▪ A method to rigorously and formally account for authentication and
authorization as part of the basic foundation of transition systems in general
and state machines in particular. For reasons of scalability, flexibility, and
generality, this method must be (1) fully parameterized in terms of next-
state transition functions, output functions, authentication functions, and
authorizations; and (2) support an arbitrarily large number of states, inputs,
and outputs.

In the following paragraphs, we give an example solution of each SC2S assurance

requirement. Note: in everything that follows, all formulas starting with a “turnstile”

Ⱶ are theorems in HOL, typeset in LaTeX by HOL, and formally verified in HOL.

A Command-and-Control (C2) Calculus for Authentication and Authorization:

The purpose of the C2 calculus is to justify the actions taken by principals based on

(1) the inputs/commands they receive, and (2) the security context they possess in

terms of authorizations, certifications, authorities they recognize and their

jurisdictions, and root trust assumptions. Some of the inference rules of our C2

calculus are in Figure 2. The rules are used in the typical way: if the current state of

the proof has terms that consistently match the pattern of the assumptions above the

horizontal line, then the conclusion below the line may be added to the proof. The

rules are guaranteed to be logically sound based on their Kripke semantics (S. Chin

& Older, 2010).

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

8

Figure 2: Sample Inference Rules of a Command-and-Control (C2) Calculus

Justifying actions is achieved by taking informal C2 protocol descriptions and

formally documenting in the C2 calculus (1) what each principal knows (analogous

to the state of a protocol), (2) policies, and (3) received orders. Figure 3(a) lists

informal C2 protocol statements and Figure 3(b) shows an inference rule OpRule 1

derived in the C2 calculus justifying Bob's actions as an operator to issue a launch

command, as shown in SC2S Figure 1. OpRule 1 states if (1) Commanders have

authority to issue go commands, (2) Alice is an authorized Commander, (3) Alice as

Commander has issued a go command, and (4) the operational policy is when go is

true so is launch, then Bob as an Operator is justified in issuing a launch command.

The logical soundness of OpRule 1 is proved using the inference rules in Figure 2.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

9

Figure 3: Informal CONOPS Statements, Formulas, and Inference Rules

Computer-Assisted Reasoning Tools for Certified Security: The lesson learned

from mainstreaming VLSI circuit design is that computer-aided design (CAD) tools

are crucial for mitigating complexity and maintaining consistency. For assurance of

security, computer-assisted reasoning (CAR) tools are essential for the same reasons.

Our CSBD framework uses Cambridge University's Higher Order Logic (HOL)

theorem prover (Gordon & Melham, 1993) as a CAR tool. HOL is used because

(1) it is higher order, which enables functions to be parameters thus allowing

succinct generalizations compared to propositional or first order logics. This avoids

state explosion; (2) it is easily extended in a sound fashion by definitional extension

and through functions written in the functional language ML; (3) created in 1987,

it has a long and proven history of soundness; (4) it has an extensive library of

theories; and (5) it was created with hardware verification in mind. For example, it

has a formalization of the Acorn RISC Machine (ARM) instruction-set architecture.

The C2 calculus is implemented as a conservative extension to HOL. This means

that the logical soundness of HOL is preserved by our implementation of the C2

calculus because the calculus was implemented by a set of definitions and no

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

10

assumptions about properties were made. Importantly, all properties and theorems

of the C2 calculus are proved in HOL.

The benefits of this HOL implementation are (1) correctness of calculated results,

(2) human error is reduced to erroneous inputs, which are easily detected, (3)

calculation speed, (4) ability to deal with large amounts of detailed and complicated

formulas, (5) ability to propagate changes quickly, and (6) most importantly, the

ability of certifiers and third parties other than designers to reproduce and check

verification results easily and quickly.

Figure 4 shows the HOL theorem corresponding to the OpRule inference rule.

In the figure, Ⱶ denotes theorems in HOL, => is logical implication in HOL, prop

go denotes <go>, and prop launch denotes <launch>. The prefix (M, Oi, Os) sat to

all the terms is due to the Kripke semantics of the C2 calculus.

Figure 4: HOL Theorem Corresponding to OpRule 1

Modeling Cryptographic Components: Authentication relies on things you

know, have, or are, for example, cryptographic keys, identification badges, or

biometrics. Cryptographic functions and their properties are important parts of the

foundation for security in much the same way as the behavioral properties of

transistors are crucial to VLSI design. Any designed-in security approach must

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

11

include behavioral models of cryptographic operations similar to the switch-level

models of transistors. Our CSBD approach includes libraries of cryptographic

operations such as cryptographic hashes, asymmetric and symmetric encryption and

decryption, and signature generation and verification.

Figure 5: Signature Generation and Verification

We take advantage of HOL's capability to define algebraic datatypes and prove

their properties. For example, we introduce a polymorphic type digest

corresponding to cryptographic hashes. The digest type constructor is hash and has

the following one-to-one property associated with ideal cryptographic hashes, i.e.,

two message digests are the same if and only if the messages are identical.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

12

In similar fashion, we define algebraic types corresponding to ideal asymmetric

and symmetric key encryption and prove their properties. Once encryption is

defined, we define the conditions under which the encrypted contents are

retrievable. This is shown by the HOL formulas in Figure 5. Signature generation

and signature verification are defined in Figure 5(a) and (b), respectively. The

properties of signVerify, the signature verification function, are given in Figure 6(a).

The theorem states that signVerify is true if and only if sent and received messages

are identical and attributable to the same principal.

Figure 6: Properties of Signature Verification and Message Authentication Function

Assuring a Unified View of Security: A common understanding of the meaning

of inputs, commands, policies, configurations, certificates, and statements, is

essential for maintaining operational and security consistency from high-level C2

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

13

protocol descriptions down to state-machine transitions. Consistency of

interpretation requires defining the meaning of all datatypes and their values. For

example, the sequence of three binary digits 111 could mean 710 in unsigned binary

arithmetic or -110 in two's-complement arithmetic.

For security, we define the meaning of input messages and state machine

configurations in the access-control logic so that we can justify the actions taken in

the C2 calculus. As an illustration, recall SC2S. All command-and-control messages

have the form

where (1) INMSG is viewed as a message header, (2) sender is the name of the

principal sending the message, (3) recipient is the name of the receiver of the message,

(4) enDEK is the encrypted data encryption key, (5) enInMsg is the message

symmetrically encrypted using the data encryption key, and (6) InMsgSig is the

digital signature of the message.

C2 messages are defined as HOL datatypes. The INMSG authentication

function checkINMSG is defined as shown in Figure 6(b) using signVerify. Its

properties are the one-to-one properties of signVerify. Figure 7 shows an annotated

HOL theorem stating that if a message is authenticated where a recognizable order

was successfully decrypted then its meaning in the C2 calculus is sender | role says

<command>, a recognizable order was decrypted, the signature is as expected, and

vice versa. The theorem's importance is it defines the meaning of authenticated

messages and the conditions under which the meaning holds.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

14

Figure 7: Interpretation of Authenticated Messages in the C2 Calculus

Parameterized State Machines: State machines are at the foundation of

computer hardware. State machine behavior is described by transition relations

among machine configurations. Most state-machine descriptions omit security

policy as a consideration because either there is no logic or language to describe

security policy or security policies are not incorporated into transition relations.

Our CSBD framework incorporates a security context given as an authentication

function and a list of certificates, policy statements, and trust assumptions. The

security context is a parameter of state machine configurations. This parameterized

approach allows authentication and authorization to be specialized and changed as

required. By including authentication functions and authorization statements that

have meaning in the C2 calculus, security is built into the foundation of computer

hardware behavioral specifications.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

15

Figure 8: State Machine Configuration with Authentication and Authorization

For example, Figure 8 shows the parameters of the HOL datatype configuration.

Configurations have (1) an authentication function, whose purpose is to identify

the source of a command (e.g., by digital signatures or shared secrets); (2) the

security context within which authenticated commands are checked for authority

(e.g., catalogs of descriptors, capability lists, tickets, mode bits, and access-control

lists); (3) an input stream; (4) the current state; and (5) the output stream.

An application of this approach is illustrated by the state machine in Figure 9.

Its operation is consistent with Popek's and Goldberg's description of virtualization

(Popek & Goldberg, 1974), and Saltzer's and Schroeder's use of a mode bit and

catalogs of descriptors to authorize processes attempting to execute privileged

instructions reserved for supervisors (Saltzer & Schroeder, 1975).

Consistent with Popek and Goldberg, we divide commands into two groups:

(1) privileged and (2) non-privileged. In a similar fashion, we divide up states into

(1) privileged states (which correspond to executing a privileged command), and

(2) non-privileged states (which correspond to executing non-privileged

commands). Commands and states are indexed by natural numbers, e.g., npcmd 5

and privcmd 12 are non-privileged command 5 and privileged command 12,

respectively. They are implemented as algebraic datatypes in HOL.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

16

F
ig

ur
e

9
:

S
ta

te
-M

ac
hi

ne
 w

ith
 I

ns
tr
uc

tio
n

A
ut

he
nt

ic
at

io
n,

 A
ut

ho
ri
za

ti
on

,
an

d
T

ra
pp

in
g

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

17

One immediate observation from Figure 9 is our state machine descriptions

easily accommodate state machines with arbitrarily large numbers of inputs and

states. The use of higher-order logic enables the next state and output functions to

be parameters and avoids the problem of state explosion in our descriptions that

occur with model checkers or first-order logic.

Similar to Saltzer's and Schroeder's mode bit, we define user and supervisor as the

HOL datatype roles. As defined in (Popek & Goldberg, 1974), all privileged

instructions are trapped if users attempt their execution. Supervisors are authorized to

execute any instruction. Trapping unauthorized instructions is done by a virtual

machine monitor (VMM) or hypervisor. Our parameterized state machine of

Figure 9 incorporates the functionality of a VMM to trap all unauthorized

instruction executions. The theorems in Figure 9 are labeled transitions TR (M, Oi,

Os) label relating two configurations if and only if the necessary conditions are true.

For example, with respect to trapping a user attempting to execute privcmd j, the

corresponding theorem in Figure 9 has the following form, where the labeled

transition relation TR (M, Oi, Os) trap (CMD (privcmd j)) is represented as:

Transitions from one configuration to another occur if and only if the input is

authenticated, a particular security interpretation is used, and the action taken

follows from the security interpretation.

What the theorem in Figure 9 states is that a trap(CMD(privcmd j)) transition from

configuration1 to configuration2 occurs if and only if (1) the input is authenticated, (2)

we are interpreting the security condition of configuration1 using CFGInterpret and

Kripke structure (M, Oi, Os), and (3) trapping is justified in the C2 calculus as

indicated by (M,Oi,Os) sat prop TRAP. The if and only if form of this theorem

assures that (1) if a trap occurred it is justified by policy and (2) if a trap is justified

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

18

by policy then it occurs. The policy is given by parameter certs p allCMD i j, whose

definition is shown in Figure 10, as a list of access-control logic formulas. Different

authentication and authorization policies are implemented by changing the

authentication function and security context in configurations.

Figure 11: Theorems Defining Security Interpretation and Trap Justification

The definition of CFGInterpret is given in Figure 11 as the conjunction of all the

access-control logic formulas that are in the policy and authenticated inputs. Shown

as well in Figure 11 is the theorem that under the security policy interpretation of

configuration1 a TRAP is justified.

4. LESSONS LEARNED TEACHING UNDERGRADUATES

“Technology is nothing. What's important is that you have a faith in people, that they're
basically good and smart, and if you give them tools, they'll do wonderful things with

them.”

 – Steve Jobs

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

19

What we have described in this paper we have taught to undergraduate

engineers and computer scientists from over fifty universities in the US and Europe

(S.-K. Chin, Devendorf, Muccio, Older, & Royer, 2012). The biggest lesson we

have learned from our experience is this: it is reasonable to equip undergraduates

with the capabilities to do certified security by design based on formal logic and

theorem proving.

The practical lessons we have learned mirror the lessons learned from the VLSI

revolution in education.

Focus on simplifications that enable security to be described and preserved across multiple

levels of abstraction. Early in our exploration of secure system design, we adopted and

soundly modified the access-control calculus for distributed systems described in

(Abadi et al., 1993). The C2 calculus used by both undergraduate and graduate

students is described fully in (S. Chin & Older, 2010). In the subsequent years after

this decision, we have used the C2 calculus to describe operations at the level of

institutional/organizational policies (Benson, Chin, Croston, Jayaraman, & Older,

2014), down through communication, authentication, and authorization protocols

(Shiu-Kai Chin, Muccio, Older, & Vestal, 2010), to finite-state machines. The

background necessary to learn the C2 calculus is undergraduate discrete

mathematics. The C2 calculus enables students to rigorously connect operational

descriptions across multiple levels of abstraction. Most importantly, the C2 calculus

enables students to precisely and accurately describe authentication and

authorization in a vertically integrated way, linking high-level descriptions to

implementations.

Define and prove properties of ideal cryptographic components. Simple algebraic models

of cryptographic operations, such as cryptographic hashes, and symmetric and

asymmetric encryption are useful and necessary for linking C2 protocols and their

description in the C2 calculus with the structure and interpretation of C2 messages

and certificates used in C2 protocols. The algebraic models are general in nature

with an array of useful properties expressed as HOL theorems. The definitions and

theorems of cryptographic operations are a useful library for students using

cryptographic components in their systems. When we made these libraries available

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

20

to students, they were able to use them soundly within the HOL theorem prover.

We also found that theorems where logical equivalence is the top-level operator

instead of logical implication are much easier for students to use. This is because

rewriting is simpler than resolution in HOL.

Parameterization and higher-order functions provide simplicity and time durability.

Embedding the C2 calculus within higher order logic and HOL is essential for

combining security descriptions with behavioral descriptions using state machines,

for example. Leveraging the capability to parameterize functions such as next-state

and output functions greatly simplifies and generalizes system descriptions. Such

generalization is the key for proving properties that are parameterized theorems

applicable to all state machines.

CAR tools are essential for realizing any security by design methodology. Just as CAD

tools and libraries of components provide a sound platform for students designing

VLSI systems, CAR tools and theory libraries provide a logically sound platform for

students designing systems with assured security and integrity. Students commented

often that using HOL sharpened their understanding of security and the systems

they were assuring. Proving theorems in HOL gives them the confidence that their

theorems really are sound. More importantly, using HOL allows others with more

experience to have confidence in the results produced by less experienced students

and engineers.

We used HOL because of its high-order nature, long-term reliability and

extensibility, and its voluminous theory library. Our results should be portable to

other higher-order CAR tools.

Students with functional programming skills have an easier time. Theorem provers such

as HOL are operated through functional languages such as ML. Security properties

are often expressed as properties of functions. Students who are comfortable with

and capable users of strongly-typed functional languages have a significantly lower

learning curve compared to students who only know imperative programming

languages. However, it is possible for students without prior functional

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

21

programming language experience and expertise to pick up these skills while

learning ML and HOL.

5. CONCLUSION

“You cannot escape the responsibility of tomorrow by evading it today.”

– Abraham Lincoln

As educators of the builders of the next generation of systems, it is our

responsibility to equip the next generation of builders with the capabilities and tools

they need to design secure systems. We have found that students are eager to meet

the challenge to build better systems with integrity and security built-in from the

start. As modern society becomes ever more dependent on cyber-physical systems

and the Internet of Things, our obligation to future generations is to give them the

engineers and computer scientists capable of securing that future. Certified security

by design shows that we can meet our obligation to the future routinely without

heroics.

6. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation

under Grant No. 1245867. The material is based on research sponsored by Serco,

Inc., through subcontract number COS1000687 Sponsored by US Air Force

Research Laboratory Rome contract FA8750-10-C-00116. Additional support

came from US Air Force Research Laboratory Rome contract FA8750-12-1-0214.

The views and conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of the US Air Force or the US Government. Dr.

Patricia Lowney provided many useful comments, refinements, and improvements

to the ideas and text in this paper. Steven Perkins formatted the text and figures for

publication.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

22

REFERENCES

[1] Abadi, M., Burrows, M., Lampson, B., & Plotkin, G. (1993). A calculus for access

control in distributed systems. ACM Transactions on Programming Languages and

Systems, 15(4), 706-34. doi:10.1145/155183.155225

[2] Benson, G., Chin, S.-K., Croston, S., Jayaraman, K., & Older, S. (2014). Banking on

interoperability: Secure, interoperable credential management. Computer Networks, 67,

235-251. doi:10.1016/j.comnet.2014.03.024

[3] Chin, S.-K., Devendorf, E., Muccio, S., Older, S., & Royer, J. (2012). Formal

verification for mission assurance in cyberspace: Education, tools, and results. Proceedings 16Th

Colloquium for Information Systems Security Education, 75-82.

[4] Chin, S.-K., & Older, S. B. (2010). Access control, security, and trust: A logical approach

(1st Ed.) CRC Press.

[5] Conway, L. (2012). Reminiscences of the VLSI revolution: How a series of failures

triggered a paradigm shift in digital design. IEEE Solid-State Circuits Magazine, 4(4), 8-

31. doi:10.1109/MSSC.2012.2215752

[6] Gordon, M. J. C., & Melham, T. F. (1993). Introduction to HOL: A theorem proving

environment for higher order logic Cambridge University Press.

[7] Popek, G. J., & Goldberg, R. P. (1974). Formal requirements for virtualizable third

generation architectures. Communications of the ACM, 17(7), 412-21.

doi:10.1145/361011.361073

[8] Saltzer, J. H., & Schroeder, M. D. (1975). The protection of information in computer

systems. Proceedings of the IEEE, 63(9), 1278-1308. doi:10.1109 / PROC.1975.9939

[9] Schell, R. R. (1979). Computer security: The achilles' heel of the electronic air force?

Air University Review, 30(2), 16-33.

[10] Shiu-Kai Chin, Muccio, S., Older, S., & Vestal, T. N. J. (2010). Policy-based design

and verification for mission assurance. 5th International Conference on Mathematical

Methods, Models and Architectures for Computer Network Security, MMM-ACNS 2010,

125-38. doi:10.1007 / 978-3-642-14706-7_10

