The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

Practice, Practice, Practice... Secure
Programmer!

Melissa Dark, Stephen Belcher, Ida Ngambeki, and Matt Bishop

Abstract - One of the major weaknesses in software today is the failure to practice defensive
or secure programming. Most training programs include only a shallow introduction to secure
programming, and fail to integrate and emphasize its importance throughout the curriculum.
The addition of an ongoing, practical, mentored "clinic" or Secure Programming Clinic (SPC)
is one way of addressing this lack without adding significantly to an already stretched
curriculum. In order to properly design this clinic, it is important to identify the knowledge,
skills and abilities (KSAs) needed to develop effective programmers. This paper describes the
results of a Delphi Study undertaken to determine the primary knowledge areas in secure
programming.

1. BACKGROUND

The current state of software today is generally poor. The quality of the software
in most systems does not support the trust placed in that software. Software security
failures are common, and the effects range from inconvenience to severe problems.
For example, failing to properly handle an error condition made Facebook
inaccessible for a few hours [John10]; the iPhone failed to ring in the New Year in
2010 [Bilt11]; a flaw in an election system used to count votes resulted in some
votes from a precinct not being counted [ZettO8]; a 2010 FDA study of recalled
infusion pumps reported that one of the most common reported problems was
software defects [FDA10]; and scientists analyzing on-board computers that control
automobiles were able to exploit software vulnerabilities to control the car without
physical access [CCK+11]. Indeed, much of computer security deals with handling
problems created by programming errors, including analyzing and countering

attacks that exploit these problems.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

A variety of causes underlie this phenomenon. One cause is the failure of
practitioners to practice “defensive programming,” in which basic principles of
robust coding guard against unexpected inputs and events. This style of
programming is often called “secure programming” or “secure coding,” but this
term is a misnomer. By rights, it should refer to programming designed to satisty a
specified security policy—the definition of “secure”, after all, is “satisfying a security
policy” [BishO2]. But the term is used more broadly to refer to programming
designed to prevent problems that might cause security breaches. This style of
programming deals with common programming errors (such as failing to check that
the size of an input is no greater than the size of where it is to be stored), and should
more properly be called “robust programming.” In this paper, we use the term

secure programming to include both.

The failure of practitioners to practice this style is not due to incompetence.
One factor stems from the market economy; those who do know how to practice
secure programming are often not given the opportunity to do so because it would
increase cost or time to market. Few believe that customers will accept longer
delivery times, or higher prices, for more robust programs. Another factor is simply
lack of preparation. As Evans and Reeder noted [EvRel0], “We ... [have a]
desperate shortage of people who can design secure systems, write safe computer
code, and create the ever more sophisticated tools needed to prevent, detect,
mitigate and reconstitute systems from damage due to system failures and malicious
acts.” This problem is one of both quality and quantity, of ensuring that students
get a sufficient amount of secure programming knowledge and practice in the

curriculum, as well as ensuring that a sufficient number of students get it.

Critical questions then are: 1) what is the current state of secure programming,
and 2) what knowledge skills and abilities are needed to develop effective

programmers.

2. THE STATE OF TEACHING SECURE PROGRAMMING

The lack of secure programming is not a new phenomenon. Indeed, in 1971,

the psychologist Gerald Weinberg codified it as his second law of programming

2

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

[Wein71]: “If builders built buildings the way programmers wrote programs, then

the first woodpecker to come along would destroy civilization.”

Most educational institutions do not change this situation. In introductory classes,
students learn to write well-structured programs. They might learn to check for
common errors such as array references being out of bounds or integers not in
particular ranges. Further, this style of programming may affect their grades, a
(sometimes large) portion of which depends on good style and error checking. But
introductory textbooks do not explore this type of defensive programming in depth,
leaving it to the instructor to cover the practice of secure programming using

supplementary material that they develop or find [NB12].

The situation worsens in more advanced classes. The focus of these classes is on
the principles and applications being covered, and programs are graded with a focus
on how well they demonstrate knowledge of those concepts and applications. The
grading rarely includes good programming style; the test is; if the code works, and
if it exhibits an understanding of the data structures, algorithms, or other material
covered in the class. Hence the practice of defensive programming atrophies
through disuse. When the student graduates and enters the field of software
engineering, the situation continues — the focus is on product development to meet
schedules and features. Minimizing time to market comes at a cost, usually of the
robustness and security of the product. Indeed, Palmer attributes the poor state of
software to the three “bad habits” [PalmO4, p. 10]: fast development, add-on
security, and feature creep. Because time to market is critical, security is often added
as an afterthought, as is making the software robust (a key component of security).
Similarly, adding more features (called “feature creep”) makes the product more

marketable, and thus is emphasized.

As an example of the criticality of this problem, consider a buffer overflow in a
widely used cryptographic library, RSAREF2, found in 1999. It enabled the
compromise of many security-based programs [CERT99, Core99|. The recent
Heartbleed flaw found in OpenSSL is another example [Schnl14]. OpenSSL is
network software that secures Internet connections. It underlies much of the web-

based purchasing mechanisms today, because those mechanisms assume an

3

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

authenticated, encrypted, integrity-checked connection. The SSL protocol
provides this. OpenSSL is a free implementation of this protocol, and is very widely
used. Unfortunately, a failure to check bounds enabled an attacker to obtain
sensitive information from a server (or client) running OpenSSL. The flaw was easy
to fix, once found. The point is, secure systems rely upon libraries and other
middleware to provide the security mechanisms, and failures in those mean the

systems that rely on them are also not secure.

Correcting this situation requires a concerted effort to change the computing
ecosphere — the marketplace, the development processes, and teaching. Focusing
on the last, students should practice robust, defensive programming throughout
their educational career. Unfortunately, this is easier said than done. First, many
faculty lack experience in this style of programming because their expertise lies in
other realms such as theory or specific aspects of systems, and so they have little
practice in this style of programming. Second, the computing curriculum leaves
little, if any, room to add more courses, or more material into existing courses. Both
cases, though, provide students with exposure to the material for limited times, and
the students — in the time-honored tradition of college students — are likely to
remember the material only so long as they need it to pass the class(es). So the focus
should be on enabling the students to gain the knowledge, skills, and abilities

necessary to make secure programming an integral part of their programming style.

We are developing a Secure Programming Clinic (SPC) to help students gain
and practice the knowledge, skills and abilities (KSAs) needed to become a Secure
Programmer. We intend to initially develop and test the Secure Programming
Clinic as we investigate the efficacy of this instructional method for shaping students’
defensive programming KSAs. Once we have an effective model, we plan to
disseminate the clinic to other universities. A first essential step in our work is a
Delphi study to identify the most critical knowledge in secure programming and
create a concept map based on our findings. We intend to use this concept map to
guide us in the development of the SPC, and to investigate students’ developing

mental models of secure programming.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

3. IDENTIFYING KNOWLEDGE, SKILLS AND ABILITIES

A. THE DELPHI STUDY

Given that the goal is to enable students to gain the knowledge, skills, and
abilities necessary to make secure programming an integral part of their
programming style, we have tried to identify the primary knowledge areas in secure
programming. We used the Delphi Method to develop a graphical representation
(concept map) of the “core” secure programming content. The Delphi Method is
a structured technique that gathers input on the given topic from a panel of experts.
The experts iterate their input to a given question(s) in two or more rounds. After
each round, a facilitator provides a summary of the experts’ inputs from the previous
round as inputs for the experts to revise their earlier answers in light of the replies
of other members of their panel. Our Delphi Method gathered information from
ten experts over four rounds. A steering committee established a questionnaire
containing seventeen (17) 1initial core characteristics related to C/C++
programming statements contributing to security relevant programming issues in
the software development industry today (Figure 1). This questionnaire was
distributed to the experts for comment. The facilitator received responses from five
government experts, one industry, and four academic experts in assured software
development. The respondents were asked to rate the set of characteristics
according to five levels of importance (Very Important, Important, Somewhat
Important, Not Important, and I disagree with this principle). The responses also
encouraged additional contributions if the responders felt there were any core
characteristics missing. The resultant set of thirty-one (31) core characteristics (Very
Important, Important, and Somewhat Important ones) were consolidated over four
(4) rounds of review. The importance levels roughly aligned with secure

programming principles, concepts, and techniques, respectively.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

Secure Programming Clinic

Survey: Major Concepts in Secure Programming

The purpose of this survey is to compile a list of the core concepts in secure
programming based on feedback from experts like yourself. These concepts will be
emphasized in the development of a secure programming clinic intended to support
students in the development of secure programming skills. The primary

programming languages for the clinic are C and C++.
Procedure

The following are a list of concepts that have been proposed as important by the

team running the secure programming clinic.

A. For each one please indicate the importance of the concept

2 g g g 8au9
o 8 £ g g > 8 555
Concept S S g 3 5 865 $.g57¢
& g & & > = BE £
g 2 g k= k= — 2 &
1 Assume that whatever can go
wrong will
2 If you don't generate it, don't trust
it
3 Hide details that users don't need to

know about

4 Assume any input is going to be

malformed or not what you expect

5 If it cannot happen, check for it.
Someone may modify the program
in such a way that it can happen ...

or you may be wrong

10

11

12

13

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

Define a list of acceptable
characters and have the program
ignore or discard any non-

acceptable characters

Do not use string functions that do

not perform any bound checking

Do not use input functions that
cannot check the length of the

input

When the memory a pointer points
to is freed, the pointer should be
reset to NULL. Otherwise, these
dangling pointers could cause
writing to freed memory, and

create a double free vulnerabilities

Check parameters to ensure that all
arguments are of the correct type

and will not overflow any arrays

Use data abstraction to enable the
compiler to perform rigorous type
checking and to enforce constraints

on values and lengths

Avoid side effects in arguments to
unsafe macros. If a developer is
using a macro that uses its
arguments more than once, then
the developer must avoid passing
any arguments with side effects to

that macro

Use parentheses around macro
replacement lists. Otherwise

operator precedence may cause the

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

expression to be computed in

unexpected ways

14 | Cand C++ compilers generally do
not check types rigorously. A
developer can increase this level of
checking by turning on compiler
warnings, which will often catch
more type errors than if they are

not used

15 Avoid calls to malloc() with the
parameter (number of bytes to be
allocated) set to 0. Either the
function returns NULL, or it
returns a pointer to space that
cannot be used without

overwriting unallocated memory

16 | Choose appropriate termination

options

17 | Minimize the scope of variables
and functions. This prevents many
unexpected changes to the variables

due to programming error

B. Please list any additional concepts that you think are missing from this list

Figure 1: Delphi Protocol with initial seventeen items

B. FINDINGS

The Delphi Study resulted in a set of thirty-one core characteristics grouped as
Very Important, Important, and Somewhat Important. Characteristics ranked as
Not Important were discarded. These thirty-one core characteristics will be

emphasized in the development of the SPC to support students in the development

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

of secure programming skills. In order to understand the relationships of these core
concepts, the steering committee developed a concept map in collaboration with
some of the experts. The concept map takes the core characteristics and connects
them hierarchically using a set of principles and relationships (Figure 2). This
concept map was organized using Bloom's revised Taxonomy of Learning as a guide
[KDO02]. This revised taxonomy lays out four dimensions of knowledge ranging
from the concrete to the abstract: factual, conceptual, procedural, and meta-
cognitive. For our purpose, Factual Knowledge corresponds to learning basics; the
program language instructions and their basic operation. Conceptual Knowledge is
where a learner begins combining various basic elements with larger structure
relationships, combining programming techniques with important security concepts.
The final two dimensions - Procedural Knowledge and Metacognitive Knowledge
- are achieved when the learner combines the basic elements, structure relationships,
and can apply and combine the knowledge base to solve new problems based on
appropriate contextual and conditional knowledge. This corresponds to combining
programming techniques and security concepts with very important security

principles to culminate in a learner that 1s a Secure Programmer.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

AuQ sordoung - dejy 1doouo) rourueidor 9Indag g 213

j/

sapiroid uo yodal 9 JELTE]

S|00L YMS = o2
sainByuca

aunl
anoidwi Wy

10

sassaippe

(vSy) Aungy pue ‘s
‘abpaimouy sJawwelbold aingag

sonstisjoeley)) abpajmouy ajdiouud
Juepodw| Jsop - depy 1dsauo)

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

The steering committee for the SPC recognizes the set of principles is not
complete. For instance, a principle area on deployment environment embodies the
knowledge level necessary to assess and address the impact of the deployment
environment. This knowledge has a critical impact on design decisions about the
program to be developed. Another missing principle area is that of risk analysis,
which again contributes to software design, architecture and coding decision-
making. However, the steering committee felt that the set of principles included
in the concept map is sufficient to provide valuable instruction to the introductory
secure programmer who is the primary target of the SPC. The steering committee
recognized that in addition to mastering the knowledge of the material, it is also
important to master the tools available. In our concept map we have two sets of
tools. One is “Programming Development Environment” and one is “SWA
(SoftWare Analysis) Tools”. Tools are invaluable and necessary to learn, and to
learning, at all levels of secure programming from a novice to an expert, so they are

included in the Concept Map.

The completed Secure Programmer Concept Map (Fig. 3) shows how the
aggregation of secure programming characteristics, in concert with the skilled
application of the set of programming tools, intend to provide a Secure Programmer
practical KSAs. Fig 3 offers that the growth of knowledge in an individual begins
with basic characteristics Somewhat Important which combine and contribute
upwards in levels of knowledge and importance. Always the growth is ultimately
contributing into Principle levels. It also demonstrates how some characteristics
begin at higher levels, such as, the two Very Important characteristics 10 and 11.

They are related to complex issues associated with the Principle of Authoritative

Cryptography.

11

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

z

Figure 3: Secure Programmer Concept Map Complete Set of Knowledge, Skills, and Abilities (KSAs)

=
|-

©®

3
£
£
e
&
o
a

il
1

o

—il

|

=

D =

g

12

ISSE)

7 Education (C

onference, Las Vegas, NV - June

formation System Security

olloquium for In

The C

015

2

he 19th Annual (

gsof t

Proceedin

(SYSY) sauiqyy puv ‘sjpiyS ‘aspajmoudy Jo 10§ a1ajduiory dvpyr 1daruory souimpidosd anias 1¢ aundig

pajsniypajeauayine
aq uea Buwjs jeuuo} ay) ey} 2ins axew ‘suonouny Buws jewuoy Buisn uayp
sious auo £q Jjo Jo Kiem ag
uonesypeds
uoissiwiad Jinejap 1981400 ay) Jas aAeY NoA ains axew ‘a|y Jo Aiopaulp e Bugeaso aiojeg
AJO1084Ip PSIoU]Sal B Wol)
Buideasa moje jou seop yjed pajepijea Aue jey) eins exew uojepijea indui Bujuuopad usy
sadA} Jejuiod omy
BAJOAUI SYIBUD SZIS JO UORIPPE USLUM SSIIE UBD SSI)I|IqeJaUINA SB dawyue Jajuiod oy sajny
SMO|HaR0
pue punosedesm Jabajul ul ynsal Aew jey) saseo Joj Aj[eioadsa sanss! UOISIaAU0D adA)
jsuleBe papuajep pue Joj paxoayd aq pinoys jndul Joj sisjeweled ||nu Yyim sucnouny Buljie
1es ajul e o} wey) Buniwy Aq sjqissod usym sanjea Indui ay) jonuoD
fiowaw pajesojeun
BunuAIBA0 JNOYIIM PaSN g JOuUED JeY] aoeds 0] Jajuiod B SUINal §1 40 “TTNN SUINjal uonoun)
8y} JaLpia "0 0} 18s (pejeso|ie 8q 0} s8)Aq Jo Jequinu) Jajawesed au) UM ()20][ew 0} S||BD PIOAY
pasn jou aie Aey)
J uey) sioua adK) alow yojeo uayo |m yoiym ‘sBuiusem saidwoo uo Buiwny Aq Bunoayo jo [ana)
Sy} @seasoul uea Jadojaaep vy Ajsnosobu sadk) ¥oeua jou op Ajjeseusb sie|idwod ++9 pue o
ndui sy Jo yiBus| sy} %98y JOUURI JBY) SUOHOUNY JI0JONISUED Jo Indul 88N Jou o
Bupjoayo punoq Aue wioped jou op jey) suonouny Buuys Jojoniysuco Jo Indul asn Jou og
Buoim aq Aew nok Jo -~ uaddey
ues) jey) Aem e yons ul weiBoid ayy Ajpow Aew suoswog)i Joj yoayo ‘uaddey Jouues | J|
pajessusb
10u aaey nok ndul Aue ypm aled sejealb axye ") 1SNy Luop ‘) 1SN 0} UOSES) OU BABY NoA |

4

v

I

saljljiqeiau|na 83y} a|gnop
& @)ealo pue ‘Aiowew peay o) Bunum asnes pinoo sieuiod Buibuep esay) ‘esimisyiQ

“TINN 0} 18sau 8q pjnoys Jsjuiod ay) ‘paay; si o) sjujod Jsjuiod e AloWwaw 8y} USYM ‘A
Joue Bupwweiboud o) enp sajqelen sy} o) sabueyo
pajoadxaun Auew sjuansid siy) “suUOROUN) pue Sa|qeleA Jo 2dods ay) aZIWIY ‘N

sfem pajpadxeun ul pajndwod aq o) ucissaidxa ay) asnes Aew aouapasaid
Jojesado ssiwusylO “S1s)| Juswsoeidal osoew punose sessyjusied asn
0JIBW JBY} O} S}03 BpIs YiIm sjuawnbie
Aue Buissed pioae jsnw Jadojaaap ay) uayj ‘asuo uey) aiow syuawnbie sy sasn jeyy
oioew e Buisn s| JadojaAsp e j| "SCIOBW SjBsUN 0} SjusWNBIR Ul S108)48 8pIS PIOAY
INOGE MOUY O} PBBU },UOP SI8SN Jeu) S|IEIep OpIH |
Juepoduw] JBUMaLLOS

wayy

10 abejuenpe aye) aseald ‘weiboud ainoss e ajealo nok diay o) sjoo) Auew ale alay| ‘ZL
swyjucBe umo nok ajeals Jo swyuobie oiydesSoydAio paiesaidap Jo ajajosqo

@sn J,uoQ 'uoneseusb Jaquinu wopues aiydesboydAio pejdeace pue umouy jem asn L}

swyyioble
umo Jnok ejesuo Jo swipuobie aydesbojdAio pajesaidap Jo sjejosqo asn JuoQ “swiyoble
S0y} JO SuOf | pue 1 ojydesBoydAso paydeaoce pue umouy [|am asn "0l

wesBoud nok ul sja0as pue spiomssed pepod piey pIoAy ‘6
wayy) jeadisjul pinoo syusiunbie
850y} yim paxoaul sweiboid moy unoaoe oju) exe) uonepijea indul Bulwuopad usypy 8
pajoalul ale SPUBLILWIOD J3UI0
OU pue pajoadxa aie PEXOAUI SPUBLLLIOD 8U Jey) 8Insua o) Weal)s Indul Inok ajepijes
ajnoaxe |jim weiboid ey YoIym Ul 1xejuod sy} puejsispun
syybua) pue sanjea Uo SJUIEJISUOD B2I0JUB
0} pue Bupjoayo adA} snosoBu wiopad o Ja)dwod sy} 8|geUS O} UOHORISAE BIEP 9 g
sheise Aue mojpeno
Jou [im pue adA) 1984100 8Y) JO sk sjuswBIE || Jey) sinsus o) siejeweled o8y 14
sinduj pajsnij-un uo paseq uoisioap Ajundes e ajew jouog ‘g
4
3

o~

10adxa NOA JeyM Jou Jo pauLiojew aq o} BujoB s| indu) Aue awnssy
M Buoum ob ued Jeasjeym BLINSSY

O uepodw) Lap

13

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

4. CONCLUSION

The shortfalls in secure programming in many computer science programs may
be addressed using a Secure Programming Clinic (SPC). A Delphi Study was
undertaken to determine the core characteristics necessary to create secure
programmer expertise. The Delphi study was an important step towards the design
of the SPC program. The resultant Secure Programmer Concept Map will be used
to design, teach, and evaluate the SPC.

5. ACKNOWLEDGEMENT

This material is based on work supported by the National Science Foundation
under grant DGE- 303211 to the University of California at Davis and grant DGE-
1303048 to Purdue University. Any opinions, findings, and conclusions or
recommendations expressed in the material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

14

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

REFERENCES

[Bilt11] N. Bilton, “Bug Causes iPhone Alarm to Greet New Year with Silence,”
New York Times (Jan 2, 2011); available at
http://www.nytimes.com/2011/01/03/technology/03iphone.html

[Bish02] M. Bishop, Computer Security: Art and Science, Addison-Wesley
Professional, Boston, MA (Dec. 2002).

[CCK+11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno, “Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” Proceedings of the 20th USENIX Security Symposium (Aug. 2011).

[CERT99] Buffer Overflows in SSH daemon and RSAREF2 Library, CERT Advisory
CA-1999- 15, CERT, Pittsburgh, PA, USA (Dec. 1999).

[Core99] CoreLabs Research, Buffer Overflow in RSAREF2, CoreLabs Advisory
CORE-120199, Core- Labs Research (1999).

[DrDr80] S. Dreyfus and H. Dreyfus, (February 1980). A Five-Stage Model of the
Mental Activities Involved in Directed Skill Acquisition. Washington, DC: Storming
Media.

[EvRe10] K. Evans and F. Reeder, A Human Capital Crisis in Cybersecurity, Center
for Strategic and International Studies, Washington, DC (2010).

[FDA10] Infusion Pump Improvement Initiative, Center for Devices and
Radiological Health, Food and Drug Administration, Silver Spring, MD 20993 (Apr.
2010); available at
http://www.tda.gov/downloads/MedicalDevices/ProductsandMedicalProcedures//p
arGeneralHospitalDevicesandSupplies/InfusionPumps/UCM206189.

[John10] R. Johnson, “More Details on Today’s Outage” (Sep 2010); available at
http://www.facebook.com/note.php?note
id=431441338919&1d=9445547199&ref=mf

[10] [KDO02] Krathwohl, D. R. (2002), A Revision of Bloom’s Taxonomy: An Overview,

Theory into Practice, Vol. 41, Number 4, Autumn 2002, Copyright 2002, College of
Education, the Ohio State University.

15

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

[11] [NB12] K. Nance, B. Hay, and M. Bishop, “Secure coding education: Are we
making progress?” Proceedings of the 16th Colloquium for Information Systems

Security Education (June 2012).

[12] [NRCO00] National Research Council, How People Learn—DBrain, Mind,
Experience, and School, National Academy Press, Washington DC (2000).

[13] [Palm04] C. Palmer, “Can We Win the Security Game?”, IEEE Security and Privacy
2(1) pp. 10-12 (Jan. 2004).

[14] [Schn14] B. Schneier, “Heartbleed,” Schueier on Security (Apr. 2014); available at
https://www.schneier.com/blog/archives/2014/04/heartbleed.html

[15] [Wein71] G. Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold, New York, NY, USA (1971).

[16] [ZettO8] K. Zetter, “Serious Error in Diebold Voting Software Caused Lost Ballots in
California County—Update,” Wired (Dec. 8, 2008); available at
http://www.wired.com/threatlevel/2008/12/unique-election

16

