
The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

1

Practice, Practice, Practice... Secure
Programmer!

Melissa Dark, Stephen Belcher, Ida Ngambeki, and Matt Bishop

Abstract - One of the major weaknesses in software today is the failure to practice defensive
or secure programming. Most training programs include only a shallow introduction to secure
programming, and fail to integrate and emphasize its importance throughout the curriculum.
The addition of an ongoing, practical, mentored "clinic" or Secure Programming Clinic (SPC)
is one way of addressing this lack without adding significantly to an already stretched
curriculum. In order to properly design this clinic, it is important to identify the knowledge,
skills and abilities (KSAs) needed to develop effective programmers. This paper describes the
results of a Delphi Study undertaken to determine the primary knowledge areas in secure
programming.

1. BACKGROUND

The current state of software today is generally poor. The quality of the software

in most systems does not support the trust placed in that software. Software security

failures are common, and the effects range from inconvenience to severe problems.

For example, failing to properly handle an error condition made Facebook

inaccessible for a few hours [John10]; the iPhone failed to ring in the New Year in

2010 [Bilt11]; a flaw in an election system used to count votes resulted in some

votes from a precinct not being counted [Zett08]; a 2010 FDA study of recalled

infusion pumps reported that one of the most common reported problems was

software defects [FDA10]; and scientists analyzing on-board computers that control

automobiles were able to exploit software vulnerabilities to control the car without

physical access [CCK+11]. Indeed, much of computer security deals with handling

problems created by programming errors, including analyzing and countering

attacks that exploit these problems.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

2

A variety of causes underlie this phenomenon. One cause is the failure of

practitioners to practice “defensive programming,” in which basic principles of

robust coding guard against unexpected inputs and events. This style of

programming is often called “secure programming” or “secure coding,” but this

term is a misnomer. By rights, it should refer to programming designed to satisfy a

specified security policy—the definition of “secure”, after all, is “satisfying a security

policy” [Bish02]. But the term is used more broadly to refer to programming

designed to prevent problems that might cause security breaches. This style of

programming deals with common programming errors (such as failing to check that

the size of an input is no greater than the size of where it is to be stored), and should

more properly be called “robust programming.” In this paper, we use the term

secure programming to include both.

The failure of practitioners to practice this style is not due to incompetence.

One factor stems from the market economy; those who do know how to practice

secure programming are often not given the opportunity to do so because it would

increase cost or time to market. Few believe that customers will accept longer

delivery times, or higher prices, for more robust programs. Another factor is simply

lack of preparation. As Evans and Reeder noted [EvRe10], “We ... [have a]

desperate shortage of people who can design secure systems, write safe computer

code, and create the ever more sophisticated tools needed to prevent, detect,

mitigate and reconstitute systems from damage due to system failures and malicious

acts.” This problem is one of both quality and quantity, of ensuring that students

get a sufficient amount of secure programming knowledge and practice in the

curriculum, as well as ensuring that a sufficient number of students get it.

Critical questions then are: 1) what is the current state of secure programming,

and 2) what knowledge skills and abilities are needed to develop effective

programmers.

2. THE STATE OF TEACHING SECURE PROGRAMMING

The lack of secure programming is not a new phenomenon. Indeed, in 1971,

the psychologist Gerald Weinberg codified it as his second law of programming

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

3

[Wein71]: “If builders built buildings the way programmers wrote programs, then

the first woodpecker to come along would destroy civilization.”

Most educational institutions do not change this situation. In introductory classes,

students learn to write well-structured programs. They might learn to check for

common errors such as array references being out of bounds or integers not in

particular ranges. Further, this style of programming may affect their grades, a

(sometimes large) portion of which depends on good style and error checking. But

introductory textbooks do not explore this type of defensive programming in depth,

leaving it to the instructor to cover the practice of secure programming using

supplementary material that they develop or find [NB12].

The situation worsens in more advanced classes. The focus of these classes is on

the principles and applications being covered, and programs are graded with a focus

on how well they demonstrate knowledge of those concepts and applications. The

grading rarely includes good programming style; the test is; if the code works, and

if it exhibits an understanding of the data structures, algorithms, or other material

covered in the class. Hence the practice of defensive programming atrophies

through disuse. When the student graduates and enters the field of software

engineering, the situation continues – the focus is on product development to meet

schedules and features. Minimizing time to market comes at a cost, usually of the

robustness and security of the product. Indeed, Palmer attributes the poor state of

software to the three “bad habits” [Palm04, p. 10]: fast development, add-on

security, and feature creep. Because time to market is critical, security is often added

as an afterthought, as is making the software robust (a key component of security).

Similarly, adding more features (called “feature creep”) makes the product more

marketable, and thus is emphasized.

As an example of the criticality of this problem, consider a buffer overflow in a

widely used cryptographic library, RSAREF2, found in 1999. It enabled the

compromise of many security-based programs [CERT99, Core99]. The recent

Heartbleed flaw found in OpenSSL is another example [Schn14]. OpenSSL is

network software that secures Internet connections. It underlies much of the web-

based purchasing mechanisms today, because those mechanisms assume an

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

4

authenticated, encrypted, integrity-checked connection. The SSL protocol

provides this. OpenSSL is a free implementation of this protocol, and is very widely

used. Unfortunately, a failure to check bounds enabled an attacker to obtain

sensitive information from a server (or client) running OpenSSL. The flaw was easy

to fix, once found. The point is, secure systems rely upon libraries and other

middleware to provide the security mechanisms, and failures in those mean the

systems that rely on them are also not secure.

Correcting this situation requires a concerted effort to change the computing

ecosphere — the marketplace, the development processes, and teaching. Focusing

on the last, students should practice robust, defensive programming throughout

their educational career. Unfortunately, this is easier said than done. First, many

faculty lack experience in this style of programming because their expertise lies in

other realms such as theory or specific aspects of systems, and so they have little

practice in this style of programming. Second, the computing curriculum leaves

little, if any, room to add more courses, or more material into existing courses. Both

cases, though, provide students with exposure to the material for limited times, and

the students — in the time-honored tradition of college students — are likely to

remember the material only so long as they need it to pass the class(es). So the focus

should be on enabling the students to gain the knowledge, skills, and abilities

necessary to make secure programming an integral part of their programming style.

We are developing a Secure Programming Clinic (SPC) to help students gain

and practice the knowledge, skills and abilities (KSAs) needed to become a Secure

Programmer. We intend to initially develop and test the Secure Programming

Clinic as we investigate the efficacy of this instructional method for shaping students’

defensive programming KSAs. Once we have an effective model, we plan to

disseminate the clinic to other universities. A first essential step in our work is a

Delphi study to identify the most critical knowledge in secure programming and

create a concept map based on our findings. We intend to use this concept map to

guide us in the development of the SPC, and to investigate students’ developing

mental models of secure programming.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

5

3. IDENTIFYING KNOWLEDGE, SKILLS AND ABILITIES

A. THE DELPHI STUDY

Given that the goal is to enable students to gain the knowledge, skills, and

abilities necessary to make secure programming an integral part of their

programming style, we have tried to identify the primary knowledge areas in secure

programming. We used the Delphi Method to develop a graphical representation

(concept map) of the “core” secure programming content. The Delphi Method is

a structured technique that gathers input on the given topic from a panel of experts.

The experts iterate their input to a given question(s) in two or more rounds. After

each round, a facilitator provides a summary of the experts’ inputs from the previous

round as inputs for the experts to revise their earlier answers in light of the replies

of other members of their panel. Our Delphi Method gathered information from

ten experts over four rounds. A steering committee established a questionnaire

containing seventeen (17) initial core characteristics related to C/C++

programming statements contributing to security relevant programming issues in

the software development industry today (Figure 1). This questionnaire was

distributed to the experts for comment. The facilitator received responses from five

government experts, one industry, and four academic experts in assured software

development. The respondents were asked to rate the set of characteristics

according to five levels of importance (Very Important, Important, Somewhat

Important, Not Important, and I disagree with this principle). The responses also

encouraged additional contributions if the responders felt there were any core

characteristics missing. The resultant set of thirty-one (31) core characteristics (Very

Important, Important, and Somewhat Important ones) were consolidated over four

(4) rounds of review. The importance levels roughly aligned with secure

programming principles, concepts, and techniques, respectively.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

6

Secure Programming Clinic

Survey: Major Concepts in Secure Programming

The purpose of this survey is to compile a list of the core concepts in secure

programming based on feedback from experts like yourself. These concepts will be

emphasized in the development of a secure programming clinic intended to support

students in the development of secure programming skills. The primary

programming languages for the clinic are C and C++.

Procedure

The following are a list of concepts that have been proposed as important by the

team running the secure programming clinic.

A. For each one please indicate the importance of the concept

Concept N
o
t

im
po

rt
an

t

So
m

ew
h
at

im

po
rt

an
t

Im
p
o
rt

an
t

V
er

y
Im

p
o
rt

an
t

I
di

sa
gr

ee

w
it
h
 t

h
is

p
ri

n
ci

p
le

1 Assume that whatever can go

wrong will

2 If you don't generate it, don't trust

it

3 Hide details that users don't need to

know about

4 Assume any input is going to be

malformed or not what you expect

5 If it cannot happen, check for it.

Someone may modify the program

in such a way that it can happen ...

or you may be wrong

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

7

6 Define a list of acceptable

characters and have the program

ignore or discard any non-

acceptable characters

7 Do not use string functions that do

not perform any bound checking

8 Do not use input functions that

cannot check the length of the

input

9 When the memory a pointer points

to is freed, the pointer should be

reset to NULL. Otherwise, these

dangling pointers could cause

writing to freed memory, and

create a double free vulnerabilities

10 Check parameters to ensure that all

arguments are of the correct type

and will not overflow any arrays

11 Use data abstraction to enable the

compiler to perform rigorous type

checking and to enforce constraints

on values and lengths

12 Avoid side effects in arguments to

unsafe macros. If a developer is

using a macro that uses its

arguments more than once, then

the developer must avoid passing

any arguments with side effects to

that macro

13 Use parentheses around macro

replacement lists. Otherwise

operator precedence may cause the

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

8

expression to be computed in

unexpected ways

14 C and C++ compilers generally do

not check types rigorously. A

developer can increase this level of

checking by turning on compiler

warnings, which will often catch

more type errors than if they are

not used

15 Avoid calls to malloc() with the

parameter (number of bytes to be

allocated) set to 0. Either the

function returns NULL, or it

returns a pointer to space that

cannot be used without

overwriting unallocated memory

16 Choose appropriate termination

options

17 Minimize the scope of variables

and functions. This prevents many

unexpected changes to the variables

due to programming error

B. Please list any additional concepts that you think are missing from this list

Figure 1: Delphi Protocol with initial seventeen items

B. FINDINGS

The Delphi Study resulted in a set of thirty-one core characteristics grouped as

Very Important, Important, and Somewhat Important. Characteristics ranked as

Not Important were discarded. These thirty-one core characteristics will be

emphasized in the development of the SPC to support students in the development

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

9

of secure programming skills. In order to understand the relationships of these core

concepts, the steering committee developed a concept map in collaboration with

some of the experts. The concept map takes the core characteristics and connects

them hierarchically using a set of principles and relationships (Figure 2). This

concept map was organized using Bloom's revised Taxonomy of Learning as a guide

[KD02]. This revised taxonomy lays out four dimensions of knowledge ranging

from the concrete to the abstract: factual, conceptual, procedural, and meta-

cognitive. For our purpose, Factual Knowledge corresponds to learning basics; the

program language instructions and their basic operation. Conceptual Knowledge is

where a learner begins combining various basic elements with larger structure

relationships, combining programming techniques with important security concepts.

The final two dimensions - Procedural Knowledge and Metacognitive Knowledge

- are achieved when the learner combines the basic elements, structure relationships,

and can apply and combine the knowledge base to solve new problems based on

appropriate contextual and conditional knowledge. This corresponds to combining

programming techniques and security concepts with very important security

principles to culminate in a learner that is a Secure Programmer.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

10

F
ig

u
re

 2
:
Se

cu
re

 P
ro

gr
am

m
er

 C
o
n
ce

pt
 M

ap
 -

 P
ri

n
ci

p
le

s
O

n
ly

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

11

The steering committee for the SPC recognizes the set of principles is not

complete. For instance, a principle area on deployment environment embodies the

knowledge level necessary to assess and address the impact of the deployment

environment. This knowledge has a critical impact on design decisions about the

program to be developed. Another missing principle area is that of risk analysis,

which again contributes to software design, architecture and coding decision-

making. However, the steering committee felt that the set of principles included

in the concept map is sufficient to provide valuable instruction to the introductory

secure programmer who is the primary target of the SPC. The steering committee

recognized that in addition to mastering the knowledge of the material, it is also

important to master the tools available. In our concept map we have two sets of

tools. One is “Programming Development Environment” and one is “SWA

(SoftWare Analysis) Tools”. Tools are invaluable and necessary to learn, and to

learning, at all levels of secure programming from a novice to an expert, so they are

included in the Concept Map.

The completed Secure Programmer Concept Map (Fig. 3) shows how the

aggregation of secure programming characteristics, in concert with the skilled

application of the set of programming tools, intend to provide a Secure Programmer

practical KSAs. Fig 3 offers that the growth of knowledge in an individual begins

with basic characteristics Somewhat Important which combine and contribute

upwards in levels of knowledge and importance. Always the growth is ultimately

contributing into Principle levels. It also demonstrates how some characteristics

begin at higher levels, such as, the two Very Important characteristics 10 and 11.

They are related to complex issues associated with the Principle of Authoritative

Cryptography.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

12

F
ig

ur
e

3
:

S
ec

ur
e

P
ro

gr
am

m
er

 C
on

ce
pt

 M
ap

 C
om

pl
et

e
S
et

 o
f
K

no
w

le
dg

e,
 S

ki
lls

,
an

d
A

bi
lit

ie
s

(K
S
A

s)

Se
cu

re

P
ro

gr
am

m
e

r

C
o

d
e

 D
e

si
gn

A
lg

o
ri

th
m

s
SW

A
 T

o
o

ls

A
ss

u
m

p
ti

o
n

s
P

ro
gr

am
m

in
g

D
e

ve
lo

p
m

e
n

t
E

n
vi

ro
n

m
e

n
t

In
p

u
ts

B

ad
 C

o
d

e

M
e

m
o

ry

M
an

ag
e

m
e

n
t

In
p

u
t

V
al

id
at

io
n

A
u

th
o

ri
ta

ti
ve

C
ry

p
to

gr
ap

h
y

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

A

B

C

D

E

F

G

H

I
J

K

L

M

N

i
ii iii

iv

v

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

13

F
ig

ur
e

3
:

S
ec

ur
e

P
ro

gr
am

m
er

 C
on

ce
pt

 M
ap

 C
om

pl
et

e
S
et

 o
f
K

no
w

le
dg

e,
 S

ki
lls

,
an

d
A

bi
lit

ie
s

(K
S
A

s)

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

14

4. CONCLUSION

The shortfalls in secure programming in many computer science programs may

be addressed using a Secure Programming Clinic (SPC). A Delphi Study was

undertaken to determine the core characteristics necessary to create secure

programmer expertise. The Delphi study was an important step towards the design

of the SPC program. The resultant Secure Programmer Concept Map will be used

to design, teach, and evaluate the SPC.

5. ACKNOWLEDGEMENT

This material is based on work supported by the National Science Foundation

under grant DGE- 303211 to the University of California at Davis and grant DGE-

1303048 to Purdue University. Any opinions, findings, and conclusions or

recommendations expressed in the material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

15

REFERENCES

[1] [Bilt11] N. Bilton, “Bug Causes iPhone Alarm to Greet New Year with Silence,”

New York Times (Jan 2, 2011); available at

http://www.nytimes.com/2011/01/03/technology/03iphone.html

[2] [Bish02] M. Bishop, Computer Security: Art and Science, Addison-Wesley

Professional, Boston, MA (Dec. 2002).

[3] [CCK+11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,

Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and

Tadayoshi Kohno, “Comprehensive Experimental Analyses of Automotive Attack

Surfaces,” Proceedings of the 20th USENIX Security Symposium (Aug. 2011).

[4] [CERT99] Buffer Overflows in SSH daemon and RSAREF2 Library, CERT Advisory

CA-1999- 15, CERT, Pittsburgh, PA, USA (Dec. 1999).

[5] [Core99] CoreLabs Research, Buffer Overflow in RSAREF2, CoreLabs Advisory

CORE-120199, Core- Labs Research (1999).

[6] [DrDr80] S. Dreyfus and H. Dreyfus, (February 1980). A Five-Stage Model of the

Mental Activities Involved in Directed Skill Acquisition. Washington, DC: Storming

Media.

[7] [EvRe10] K. Evans and F. Reeder, A Human Capital Crisis in Cybersecurity, Center

for Strategic and International Studies, Washington, DC (2010).

[8] [FDA10] Infusion Pump Improvement Initiative, Center for Devices and

Radiological Health, Food and Drug Administration, Silver Spring, MD 20993 (Apr.

2010); available at

http://www.fda.gov/downloads/MedicalDevices/ProductsandMedicalProcedures//p

arGeneralHospitalDevicesandSupplies/InfusionPumps/UCM206189.

[9] [John10] R. Johnson, “More Details on Today’s Outage” (Sep 2010); available at

http://www.facebook.com/note.php?note

id=431441338919&id=9445547199&ref=mf

[10] [KD02] Krathwohl, D. R. (2002), A Revision of Bloom’s Taxonomy: An Overview,

Theory into Practice, Vol. 41, Number 4, Autumn 2002, Copyright 2002, College of

Education, the Ohio State University.

The Colloquium for Information System Security Education (CISSE)
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015

16

[11] [NB12] K. Nance, B. Hay, and M. Bishop, “Secure coding education: Are we

making progress?” Proceedings of the 16th Colloquium for Information Systems

Security Education (June 2012).

[12] [NRC00] National Research Council, How People Learn—Brain, Mind,

Experience, and School, National Academy Press, Washington DC (2000).

[13] [Palm04] C. Palmer, “Can We Win the Security Game?”, IEEE Security and Privacy

2(1) pp. 10–12 (Jan. 2004).

[14] [Schn14] B. Schneier, “Heartbleed,” Schneier on Security (Apr. 2014); available at

https://www.schneier.com/blog/archives/2014/04/heartbleed.html

[15] [Wein71] G. Weinberg, The Psychology of Computer Programming, Van Nostrand

Reinhold, New York, NY, USA (1971).

[16] [Zett08] K. Zetter, “Serious Error in Diebold Voting Software Caused Lost Ballots in

California County—Update,” Wired (Dec. 8, 2008); available at

http://www.wired.com/threatlevel/2008/12/unique-election

