
The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

1 

 

The Erich Spengler Student Paper Award Winner 

for 2014 

A Structured Approach to Student-
Discovered Bugs and Vulnerability 

Disclosure 

James Sullivan, Michael E. Locasto 
 

University of Calgary 
 

 

Abstract - There is a high demand for software developers and security professionals with 
strong software analysis skills. Currently, many students learn software analysis as an 
auxiliary exercise to their programming projects, and their experience is limited to white-box 
testing of applications that they or their peers have written. This type of experience does not 
give students a realistic or practical set of skills which they can immediately apply to more 
complex tasks. We describe our experiences with an information security course project in which 
students were tasked with discovering and analyzing software flaws in real software projects, 
giving students practical experience in flaw analysis and bug reporting. We discuss the focuses 
and goals of this project, including its emphasis on responsible disclosure, and the trends in 
student’s comfort with analysis techniques and tools. 

 

1. INTRODUCTION 

Quality testing and security auditing have become key steps in the software 

development cycle. A successful large-scale software project will extensively and 

pervasively test its codebase to uncover flaws in their software, particularly those 

with security implications. While a number of analysis tools exist to aid developers 

in identifying bugs, it is still a learned skill to determine the root cause of a flaw, or 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

2 

 

to create a useful bug report to aid another developer, and the industry expects 

students to be versed with these skills. 

Many students learn software testing only as an auxiliary exercise to software 

development, and testing is often limited to operation on expected input. 

Furthermore, most computer science students only perform white-box application 

testing during their education, and most of the time this is of their own work. It is 

a fundamentally more challenging problem to black-box test applications, or to 

work in unfamiliar codebases. The skills needed for both of these acts are in high 

demand in the industry, for security professionals and for developers alike. 

Software testing requires a fundamentally different frame of mind than 

development does. During development, the focus is on making the software work 

as intended. On the other hand, the goal in software testing is exactly the opposite– 

to break software in creative and unexpected ways, and in doing so expose its flaws. 

In [1], Bishop argues for the educational value of penetration testing, which allows 

students to consider a system as it is actually used rather than it is intended to be 

used. 

A fourth-year computer security course we offered in 2013 aimed to fill the gap 

in student’s application testing and flaw analysis. A term project tasked students with 

locating two flaws in any software of their choice, creating a comprehensive report 

and analysis of the flaw and its root cause. This project encouraged students to 

question trust assumptions, and better understand the perspective of both the 

security expert and the malicious adversary. 

By the end of the term, the students had successfully located and reported almost 

80 flaws in a wide variety of software, many of which have subsequently been 

resolved by the software maintainers. The flaws were discovered with minimal 

guidance from the instructor, most students were able to find these flaws almost 

entirely through independent effort. 

The reports created by the students were collected and scored based on their use 

of a variety of diagnostic methods, the quality of the report, and interactions with 

the software vendor or maintainer. The goal of the project was not to produce a 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

3 

 

corpus of security-significant vulnerabilities in software, and many of the bugs found 

had no security implications. However, a number of students were able to find 

interesting bugs, and those who did not still had an opportunity to hone the skills 

prerequisite to application testing. 

As [2] discusses, whenever students are taught how to break systems, it is vital 

to maintain perspective on the ethics and legality of the work. To this end, our 

project had a significant emphasis on responsible disclosure, which is equally as 

important to educate students on as the technical skills associated with finding 

software flaws. All of the students were required to submit a formal report of the 

flaw, detailing its probable cause and discussing mitigation strategies. By making the 

report a marked component of the assignment, and laying out guidelines for creating 

quality reports, we also aimed to foster good bug reporting practices, another 

invaluable skill for students. 

We encouraged students to disclose their findings to the software vendor or 

maintainer in question, and found that most students did this despite it not being a 

requirement (see Section 5). These interactions were promising and showed that 

students can be capable of self-motivated professionalism and accountability with 

such findings. 

Our results from this project demonstrated the following: 

▪ Students have the skills to find and analyse software flaws,  

▪ Students are able to give back to the community with such activities, and  

▪ The risk of teaching these skills to students is minimal if responsible 
disclosure is a focus.  

 

In Section 3, we will describe the setup of the project, including the rubric 

which the students were given and our experimental design (namely, the rating 

scheme we have used for reports). We also discuss properties of good bug reports, 

and how this motivated our rating system. In Section 4 we discuss the student’s 

preferred techniques for flaw analysis, discussing the trends seen in these preferences 

between different report classifications. We discuss our efforts to encourage 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

4 

 

responsible disclosure in Section 5, in which we found students exceeded 

expectations of professionalism. 

2. RELATED WORK 

Security training has recently become much more accepted and practiced at 

educational institutions, including practical exercises designed to teach students 

adversarial techniques. Numerous recent publications such as [3, 4, 5, 6] have 

described the use of practical security exercises to educate students on security 

analysis. We observe a number of common trends in these articles; firstly, that they 

are often based on designed scenarios, and secondly that they rely on a closed 

environment (either physical or virtual). 

The use of pre-designed scenarios for information security learning is a common 

practice, and is used both in an academic setting, for security competitions (capture-

the-flags), and for informal security education (crackme exercises, intentionally 

insecure local applications, et cetera). In [7], Poulious et. al describe scenario-based 

learning as a necessary accompaniment to lecture-based course delivery. The 

authors describe a sample workshop that follows their methodology, with a focus 

on specific steps that the students could follow to achieve their goal, and the tasks 

were clearly defined to the students. 

Another educational framework that makes use of scenarios for security 

education is the EDURange [8] system. EDURange gives students access to a 

cloud-based sandbox for practical security exercises, focusing on network security. 

This framework is an open-ended one that focuses on goals that the students should 

accomplish more than their methods, which can be simultaneously more 

challenging and rewarding for students. 

Scenario-based learning, as described in [7] and similar works, enables a more 

detailed description of the problem that students are to solve. This can be useful for 

less advanced students, and to maintain focus on key lessons. However, we find that 

this is not reflective of the actual analysis process, which is generally a task that has 

few initial specifications or goals and is less linear than pre-made exercises. 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

5 

 

While open-ended software analysis is undoubtedly more challenging for 

students, our results show that students can succeed with less direct instruction and 

guidance if they are motivated to do so, and are relatively advanced in their 

education. By having students investigate real software in a less rigid environment, 

we encourage more creative analysis techniques. Using pre-defined security 

scenarios is useful if one wishes to focus on a particular lesson, and open-ended 

exercises such as the one we describe may be more challenging to focus the 

educational content in. Balancing both of these scenario-based and ad-hoc delivery 

methods is important for an educator. 

A common trend for security exercises is to take place in a closed environment, 

either physical or virtual. Virtualization is a popular technique for containing 

security exercises, since it is easy to instantiate and modify the environment, and is 

cheaper than purchasing physical lab equipment. In [4], Andel et. al compare two 

common approaches for virtualized lab environments, namely operating system 

virtualization or full virtualization. The former is a memory-efficient tool to run 

virtual machines, but the latter allows for different system architectures to be 

instantiated, which is perhaps a more realistic simulated environment. 

A virtual laboratory for security exercises is described in [3], focusing on making 

a link between the design of cryptographic protocols and their implementation. 

Another example is given in [9], where the VITAL framework is described. Both 

of these systems make use of virtualized laboratory environments to deliver security 

exercises in a controlled manner. The exercises described by Yuan et. al in [6], 

which includes web application testing and fuzz testing, were executed from within 

a decentralized virtual machine that each student had a copy of, another example 

of a virtualization based delivery platform. 

While virtualized environments are convenient and cost-effective, they sacrifice 

some degree of realism for these benefits. A less common approach is to use a 

physical laboratory, as was done in [5]. This particular laboratory is described to be 

a networked laboratory that students used under careful supervision. This approach 

can be more challenging to control since students can turn their tools towards other 

devices, and cooperation with the IT department of the institution was required 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

6 

 

since some of the traffic the students generated would have been dropped by the 

firewall of the institution. The author describes a transition from using a fully 

enclosed laboratory environment to one that has restricted access to some other 

hosts on the internet, which was useful to expand the students’ set of resources but 

required close cooperation with the IT department. 

Our approach is unique in that it requires little lab infrastructure for its execution, 

and students can work from their own environment. This was both a cost-effective 

method and gave students a realistic environment to work in, an advantage over 

either virtualized or physical lab infrastructure.  

Placing restrictions on what students can do during their security exercises is a 

important to prevent abuse of the system, and for supporting targeted educational 

exercises that reinforce particular concepts. Physical and virtual labs can enforce 

proper conduct by monitoring the student’s behaviour. Our method, in contrast, 

enforces good conduct by making accountability a key component of the 

assignment, otherwise giving the students reasonable freedom to analyze real 

software in their own environments. We found that the students exceeded our 

expectations of accountability (see Section 5 for details), and while the open-ended 

environment was challenging for many students, it encouraged some interesting 

discoveries. 

Other similar recent projects have put emphasis on student’s abilities to work 

with foreign codebases and to perform software maintenance. [10] proposes the use 

of older student projects to give current students a foreign code body to practice 

software maintenance on. They found that using student-created code samples was 

useful for a realistic practice environment, since the code was not textbook perfect 

and was unfamiliar to the students. Our use of real software projects similarly gave 

students a realistic environment to practice their analysis skills in. 

3. SETUP 

Each student was tasked with collecting and reporting two bugs from any 

software of their choice. The bugs did not have to be from the same system, and 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

7 

 

there was a length of time in between the first and second report for the students 

to reflect on their first report. 

The reports were to contain a variety of details:  

▪ Summary of the software, flaw, and environment,  

▪ Description of initial evidence of the flaw,  

▪ Description of the diagnostic techniques used,  

▪ A proof of concept input or steps to trigger the flaw,  

▪ Discussion of the flaw’s security implications, and  

▪ Description of contact with the software vendor/maintainer.  

 

With each section being a contribution to the total mark on the report. In total, 

we collected 79 reports from the 40 enrolled students. 

Students were encouraged to use a wide variety of tools for software analysis, 

including debuggers, interactive disassemblers, and source-code analysis (where 

applicable). We detail in Section 4 the most common techniques that the students 

used in their searches. 

A 2010 study [11] by Bettenburg et. al of three high-visibility open source 

projects- Eclipse, Apache, and Mozilla- aimed to empirically define what a good 

bug report should contain, through developer and reporter surveys. We have used 

this evidence provided to create a template for a good bug report, and assigned 

scores to the student’s reports. 

...the most widely used items across projects are steps to reproduce, 

observed and expected behavior, stack traces, and test cases.[11]  

For the importance of items, steps to reproduce stands out clearly. 

Next in line are stack traces and test cases...[11]  

We defined a report to be of high quality if it contains relevant information as 

outlined in [11] - in particular, we wished to see a summary of the flaw, steps to 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

8 

 

reproduce, observed and expected behaviour, screenshots where relevant, and test cases. 

Other information that was beneficial to the student’s report was also a factor in the 

scoring. 

A score of low was assigned to reports with incorrect or incomplete information, 

medium for reports that were sufficient but not as complete as possible, and high for 

reports that contained all necessary information. The scoring mechanism was not 

intended as a strong empirical quantification of bug report quality, but instead 

evidence that a given student report match the major structural features of the 

template report. 

 

Figure 1: Proportion of student report quality scores 

As seen in Figure 1 (pp. 7), 57% of the reports created were found to be of high 

quality, while only a small 10% of reports were given a low score. Because the rubric 

provided gave students a clear guideline on how to succeed in this assignment, this 

is not an unexpected outcome, and is evidence that students are more than capable 

of producing useful bug reports given some guidance. 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

9 

 

4. STUDENT TECHNIQUES 

Many tools and methods exist for the diagnosis of flaws in software. These range 

from the basic skills (such as visually identifying flaws) to the more advanced (using 

more powerful debugging tools). A successful analyst will use a wide variety of tools 

to gather evidence of the flaw and piece the information together to close in on the 

root cause. 

We identified eight diagnostic vectors (see Fig. 2) that the students used in their 

reports. To quantify the student’s use of these vectors, the reports were given 

unweighted scores in these eight vectors; a score of 0 indicated little or no use of 

the vector, 0.5 indicated partial or occasional use, and 1 indicated a high use. The 

intentionally coarse scoring mechanism attempts to minimize subjectivity, rather 

than provide an empirical quantification of a student’s use of a given technique.  

In this section we describe the common techniques used by students, 

distinguishing two broad investigative techniques- active and passive analysis. 

Passive analysis techniques include the following:  

▪ Source Code analysis, in which students manually read source code to 
attempt to discover vulnerabilities or the root cause of a flaw,  

▪ External Research, in which students locate vulnerabilities or vulnerability 
classes in software by way of examining past reports and attempting to 
reproduce the reports (note that the methods of reproduction may include 
other analysis techniques),  

▪ Visual Evidence, in which students identify flaws in software based on its 
user interface, including accidental discovery of flaws through normal use, 
and  

▪ Log Files, in which students use the log files of the software to identify 
misconfiguration of the software or to analyze a software crash.  

▪ Active analysis techniques include the following: 

▪ Handcrafted Active Input, in which students create an input or 
environment of execution for the software designed specifically to trigger a 
flaw that they have identified, generally through trial-and-error,  



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

10 

 

▪ Specialized Tools, which includes network analysis tools, application 
testing frameworks such as Metasploit [12], fuzz testing tools such as afl 
[13],  

▪ Handcrafted Tools/Scripts, which are specialized tools or scripts that the 
students create themselves specifically for the purpose of analyzing the 
given software, and  

▪ Debuggers and interactive disassemblers, where students use these 
applications to examine the state of the application after a crash or to 
determine its path of execution for some given input.  

While active analysis techniques are more advanced, both passive and active 

analysis are useful tools for flaw identification. We found that most students focused 

on passive analysis techniques, perhaps due to lack of comfort with active techniques, 

but discovered that the students who used active techniques were more likely to 

discover interesting reports. Figure 2 shows the diagnostic methods used by students, 

and the raw values can be found in Table 3. 

 

Figure 2: Bug diagnostic methods used by students (Average, all reports). The value of each 
vector is the average of all students’ use of the given diagnostic tool, rated in terms of high, 

medium, low, and no reliance. 

  



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

11 

 

Avg. student vector 
reliance All reports 

High 
Quality 
Reports 

Medium 
Quality 
Reports 

Interesting 
Reports 

 Source Code 0.47 0.63 0.21 0.46 

Log Files 0.21 0.23 0.23 0.12 

Debuggers 0.10 0.14 0.02 0.15 

Handcrafted Tools/Scripts 0.04 0.07 0.02 0 

Specialized Tools 0.09 0.12 0.08 0 

Visual Evidence 0.89 0.84 0.94 0.96 

External Research 0.14 0.21 0.06 0.19 

Handcrafted Input 0.25 0.30 0.23 0.38 

Count 79 45 26 13 

 
Table 3: Raw scores for student’s utilization of bug diagnostic methods. 

4.1 Passive Analysis 

In the analysis of the diagnostic techniques used by the students, it was found 

that there was a high degree of clustering on passive techniques. In particular, visual 

evidence was overwhelmingly the most common choice, where the students 

identified software flaws by evidence in the user interface of the program. 

These students demonstrated little use of common but vital tools such as 

debuggers, despite being close to graduating from their information security 

program. For an advanced group of students, this was somewhat concerning, and is 

evidence that students are not comfortable using these analysis tools. 

Even when considering the high quality reports, there is still a marked disuse of 

some diagnostic techniques. A comparison of the diagnostic vectors used in medium 

and high quality reports in Figure 4 shows that higher quality reports tended to use 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

12 

 

their tools to a greater depth, but demonstrated similar patterns of preference. We 

also observed a marked increase in the reliance on source code between medium 

and high quality reports, which could indicate that open-source projects were easier 

to analyze, or that the medium quality reports simply did not make use of source 

code. 

 

Figure 4: Bug diagnostic methods over High and Medium quality reports (Average, all 
reports in category). The value of each vector is the average of all students’ use of the given 

diagnostic tool, rated in terms of high, medium, low, and no reliance. 

Note that due to an insufficiently large sample size, an analysis of the low quality 

reports is omitted from Fig. 4. 

The preference for certain techniques is not unexpected- a graphical bug will 

almost certainly be quickly noticed, whereas a memory leak may go unnoticed for 

some time without examining the resource usage or log files. However, even in 

their continued investigations, many students did not use the more advanced tools. 

A small subset of students demonstrated that they were capable of effectively 

using a wider variety of techniques, but these students were the minority. This is 

evidence of a need for greater encouragement to use these advanced techniques, 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

13 

 

and more opportunity for activities such as this project in which students can hone 

their analytic abilities and the security mindset. 

4.2 Active Analysis 

More advanced students used techniques similar to those found in penetration 

testing exercises. This included the use of debuggers and interactive disassemblers, 

specialized analysis tools, and handcrafted input designed to trigger the vulnerability 

in the program. Use of such active techniques is what we believe to be a strong 

indicator of the security mindset. It is evidence that students are actively questioning 

trust assumptions, and creatively interacting with a system in an adversarial way. 

Use of these techniques were, in general, more fruitful for security related 

vulnerabilities (see Figure 5, pp. 12). 

A student that is capable of this type of analysis demonstrates a much stronger 

understanding of the system in question. This skill requires a deep, cross-layer 

understanding of the target system rather than a superficial understanding of an API 

or protocol that typical use cases of software imparts. 

In contrast, passive analysis of software can also reveal flaws, but more often than 

not, it suffices only for the more superficial bugs. While these methods can 

undoubtedly reveal important flaws in software, they are less useful to trigger 

unexpected behaviour in the system. 

We found that students who were comfortable with these active methods tended 

to find the more interesting flaws in software. We categorized this subset of 

interesting bugs as those that posed a security risk to a non-trivial system, or were a 

highly unusual or unexpected flaw. Some examples of these interesting flaws 

included: 

▪ A method to download paid Android applications directly from the 
Google Play Store without any net payment.  

▪ Ability to bypass the Gnome Display Manager login screen in Scientific 
Linux 6 without authentication, providing access to some areas of the 
filesystem and some binaries (including the Python interpreter).  



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

14 

 

▪ Ability to create many smurf accounts in the Piazza web service from a 
single email address, and to share group privileges across all of these 
accounts.  

 

Of the 79 reports, we separated out 13 such interesting bugs. We found a higher 

tendency for the use of advanced analytic techniques in the analysis of these flaws- 

in particular, providing handcrafted input to the system in an attempt to trigger 

unexpected behaviour (Figure 5). These particular reports show that some students 

will make good use of these opportunities in the classroom, and are able to find 

flaws that exceed what one may expect from an undergraduate term project.  

 

Figure 5: Bug diagnostic methods used in interesting reports (Average, all reports in 
category). The value of each vector is the average of all students’ use of the given diagnostic 

tool, rated in terms of high, medium, low, and no reliance. 

5. ACCOUNTABILITY 

Many institutions are wary of offering this training to students, despite its 

possible educational value. There is a belief that because these offensive techniques 

can be used maliciously, that they will be used maliciously. In [14], Cook et. al 

describe their experiences with student misbehaviour, detailing a number of 

incidents where students used their adversarial knowledge inappropriately. While 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

15 

 

this is always a risk when teaching this type of material, we do not believe it reduces 

its importance to teach, but care must be taken to encourage good student conduct 

during and after the exercises.  

A course that has been regularly offered over the last decade at the University of 

Calgary has students study existing malware and write their own in a controlled and 

secure lab environment. Registration in the course is a rigorous process and 

prospective students have to adequately prove to the instructor that they have the 

integrity and responsibility prerequisite to the material. 

In his 2005 publication Viruses 101 [15], Dr. John Aycock, Univ. Calgary, 

describes the importance of teaching these skills in a controlled environment such 

as an educational institution. 

...it is very easy to learn how to create malware, even for people 

with no programming expertise. It is not easy, however, to learn this 

in a safe environment, nor to get an objective view of the entire field, 

both malware and anti-malware. [15]  

There is no doubt that there are many ways to learn these skills outside of an 

academic setting, but we believe that an educational institution is unique in its 

ability to structure this information, and couple it with an examination of ethics and 

legality. 

The project placed a strong emphasis on responsible disclosure of flaws, and 

encouraged (but did not require) students to interact with the maintainers and 

community about the bugs they discovered. We found that despite the fact that 

community interaction was not required, it was still frequently performed by the 

students.  

In one particular report, the student identified an improperly sanitized user input 

field in a small research organization’s database. After identifying this vulnerability, 

the student was able to gain full access to the user database via SQL injection, 

including full email addresses and names. This particular flaw was reported to the 

organization as per the recommendation of the assignment, and was promptly 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

16 

 

patched. Not only did the student enhance their ability to pro-actively analyse and 

compromise a system, they did so in a way that benefited the vendor. This was a 

very common trait in most of the reports. A total of 86% of student reports (see 

Figure 6) indicated that the student had taken action to contact the software vendor 

or maintainer, despite the fact that the assignment only encouraged this and did not 

explicitly require it.  

 

Figure 6: Proportion of bugs reported to software vendor or maintainer. Note that this was 
not a required component of the project, but was encouraged. 

The students demonstrated a high degree of professionalism and accountability 

with their findings, a credit to the structured nature of this project. With enough 

guidance, it is clear that students can operate in this way, even when tasked with 

sensitive work. 

6. CONCLUSION 

The bug report project was designed not only to give students hands-on 

experience with flaw detection and security analysis, but also to impart the essential 

skills of communicating these findings, and the social responsibility to do so. The 

program was successful in this regard, and is evidence that this type of training is 

not a threat to the integrity of our students, as long as strict ethical standards are 

adhered to by the program. 

The rubric described in Section 3 was reflective of these project goals and was 

useful in guiding student’s behaviour while still maintaining a relatively open-ended 

specification. We specified a number of required report components that agree in 

part with the results of [11]. These components include steps to reproduce the flaw, 

the software environment used during its invocation, a proof of concept input to 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

17 

 

trigger the flaw (in essence, test cases), and a discussion of observed and expected 

behaviour. 

We observed in Section 4 that students biased their efforts towards simpler tools 

and techniques. Students overwhelmingly preferred passive flaw analysis techniques 

such as visual evidence, source code analysis, and log file analysis. Comparatively 

few students made use of active analysis tools such as debuggers, interactive 

disassemblers, and specialized penetration testing tools, despite the importance of 

such techniques in actual security audit. Incorporating small practice labs into the 

class may be a useful strategy for ensuring students have a better idea of how to use 

these analysis tools, and we will explore this in future projects. 

As could be expected, the more interesting reports (those with security 

implications or were creative or unexpected) were on average discovered through 

a more balanced set of tools and techniques compared to the average of all 79 reports. 

This may be indicative that the student’s increased comfort with the toolset and 

techniques involved in security analysis gave them an advantage over their peers, or 

that the flaws in question required a more thorough analysis than some more 

superficial flaws. In either case, we believe that our results are evidence that there 

is room for improvement with the average student’s auditing expertise and flaw 

analysis skills.  

A key focus of our project was on accountability of the students, and on 

responsible disclosure. We found that in general students were willing to exceed 

expectations for responsible disclosure, with 86% of reports indicating that the 

student had notified the software vendor or maintainer of the flaw. This high 

proportion was in spite of the fact that communication with the maintainer was not 

a required component of the assignment. Despite the sensitive nature of the work, 

these students demonstrated professionalism with their findings. Maintaining a focus 

on responsible disclosure and ethics (and, of course, legality) is vital for any such 

project. 

The open-ended nature of the project was challenging for students, particularly 

when many of them had little to no experience with analyzing foreign code bases 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

18 

 

(possibly without source code). Future work will seek to refine the structure of the 

assignment to ease students into software analysis. We also plan to further explore 

the effectiveness of this type of practical training, gauging student’s comfort with 

software analysis practices before and after the project, and use these results to refine 

our procedure. 

  



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

19 

 

REFERENCES 

[1] M. Bishop, “About penetration testing,” Security Privacy, IEEE, vol. 5, pp. 84–87, 

Nov 2007. 

[2] P. Y. Logan and A. Clarkson, “Teaching students to hack: curriculum issues in 

information security,” in ACM SIGCSE Bulletin, vol. 37, pp. 157–161, ACM, 2005. 

[3] T. Zlateva, L. Burstein, A. Temkin, A. MacNeil, and L. Chitkushev, “Virtual 

laboratories for learning real world security,” in Proceedings of the 12th Colloquium for 

Information Systems Security Education, Dallas, TX, 2008. 

[4] T. R. Andel, K. E. Stewart, and J. W. Humphries, “Using virtualization for cyber 

security education and experimentation,” in Proceedings of the 14th The Colloquium for 

Information Systems Security Education (CISSE 2010), 2010. 

[5] B. Eckart, “Real-world security lab environment,” in Proceedings of the 16th The 

Colloquium for Information Systems Security Education (CISSE 2012), 2012. 

[6] X. Yuan, J. Hernandez, and I. Waddell, “Hands-on laboratory exercises for teaching 

software security,” in Proceedings of the 16th The Colloquium for Information Systems 

Security Education (CISSE 2012), 2012. 

[7] N. S. Poulious and D. Pradhan, “Scenario based exercises in IA courses,” in 

Proceedings of the 15th The Colloquium for Information Systems Security Education (CISSE 

2011), 2011. 

[8] S. Boesen, R. Weiss, J. Sullivan, M. E. Locasto, J. Mache, and E. Nilsen, “Edurange: 

meeting the pedagogical challenges of student participation in cybertraining 

environments,” in Proceedings of the 7th USENIX conference on Cyber Security 

Experimentation and Test, pp. 9–9, USENIX Association, 2014. 

[9] E. Gavas and K. O’Brien, “Teaching network security using vital,” in Proceedings of 

the 16th The Colloquium for Information Systems Security Education (CISSE 2012), 2012. 

[10] C. Szabo, “Student projects are not throwaways: teaching practical software 

maintenance in a software engineering course,” in Proceedings of the 45th ACM 

technical symposium on Computer science education, pp. 55–60, ACM, 2014 



The Colloquium for Information System Security Education (CISSE)  
Proceedings of the 19th Annual Conference, Las Vegas, NV - June 2015 

 

 

20 

 

[11] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann, 

“What makes a good bug report?,” in Proceedings of the 16th ACM SIGSOFT 

International Symposium on Foundations of software engineering, pp. 308–318, ACM, 2008. 

[12] Metasploit, “The metasploit project,” 2006. 

[13] lcamtuf@coredump.ctx, “American fuzzy lop.” 

[14] T. Cook, G. Conti, and D. Raymond, “When good ninjas turn bad: Preventing your 

students from becoming the threat,” in Proceedings of the 16th The Colloquium for 

Information Systems Security Education (CISSE 2012), 2012. 

[15] J. Aycock and K. Barker, “Viruses 101,” SIGCSE Bull., vol. 37, pp. 152–156, Feb. 

2005. 


