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Abstract—The integration of artificial intelligence (Al) into
daily life and critical infrastructure has elevated the
importance of addressing cybersecurity concerns within Al
applications. While Al systems offer numerous benefits, such
as enhanced efficiency, automation, and decision-making,
they also introduce novel vulnerabilities and threats. Ensuring
the security and reliability of these systems is crucial. This
paper investigates key cybersecurity challenges associated
with Al, including data privacy, integrity, adversarial attacks,
and the ethical implications of Al in security. Additionally, it
examines the role of Shapley Additive explainable Al in
promoting transparency, allowing for greater interpretability
of Al models and insights into decision-making processes.
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[. INTRODUCTION

In the digital age, the integration of Artificial Intelligence
(Al) across various sectors has led to transformative changes,
offering unprecedented opportunities for innovation and
efficiency. However, these advancements introduce complex
cybersecurity  challenges  that impact individuals,
organizations, and society. As Al becomes increasingly
embedded in daily life and critical infrastructure, securing
these systems against malicious attacks, unauthorized
access, and unintended consequences is critical. We explore
key cybersecurity issues in Al applications, such as data
privacy breaches, adversarial attacks, ethical considerations,
and Al-driven cyber threats. Understanding these challenges
is essential for developing robust security measures, ensuring
ethical Al use, and maintaining trust in digital systems. A
collaborative approach among technologists, policymakers,
and stakeholders is necessary to balance Al's potential with
effective risk mitigation.

This paper provides a comprehensive analysis of Al-
related cybersecurity concerns, identifying Al's limitations,
assessing specific cyber threats, and evaluating strategies for
mitigating these risks. It also addresses the ethical and legal
implications of Al security and examines the future direction
of explainable Al. By making these topics accessible, this
paper serves as a resource for developers, business
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managers, and government agencies, offering insights into
both technical and strategic considerations necessary for
managing and securing Al systems. Protecting privacy and
remaining vigilant are crucial as Al continues to shape the
digital landscape.

[l. CYBERSECURITY THREATS WITH Al APPLICATIONS

Protecting data privacy and integrity is a significant
concern in Al applications, as these systems often need large
amounts of sensitive data for training and operation.

A. Data Poisoning

Attackers can manipulate Al by introducing malicious data
into its training set, leading to flawed decision-making. Data
integrity is crucial for the accuracy and reliability of Al
systems. Malicious actors can manipulate training data
through data poisoning attacks, deliberately introducing
inaccuracies to compromise the system's performance. In
Data Poisoning, attackers can manipulate machine learning
systems according to their goals [1].

Al models are trained using data sets. In a data poisoning
attack, as depicted in Figure 1, malicious data is introduced
into the training dataset.
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Fig. 1. Data poisoning in action
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Figures 2 and 3 show the area under the curve (AUC) score
with the training dataset with no data poisoning and 25% data
poisoning [1]. From the figure, we can observe a significant
difference between false positive rates. A false positive is a
result that is incorrectly identified as positive. We can also
observe significant differences in True Positive results from
the AUC curve.
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Fig. 2. A Training Data Set with no Data Poisoning [1]
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Fig. 3. A training dataset with 25% data poisoning [1]

Input Actions 3 Collect

1. Recorm;flcr & Query

[ Application

Kernel

Required Data

[ |
] . Lram
cpu][..|[ peices | D

To prevent data poisoning, we should ensure data integrity
through rigorous validation, cleaning, and anomaly detection
to spot malicious inputs. We should also strengthen model
robustness with adversarial training and data augmentation.
Additionally, we need to regularly audit and update data
sources while implementing strong access controls and
continuous monitoring to protect against unauthorized
interference.

B. Model Theft

Unauthorized access to Al models, known as model theft
or extraction, allows attackers to replicate and misuse the Al
application. This is a significant concern in Al cybersecurity,
especially given Al's limitations. Figure 4 illustrates the six
steps of machine learning, the targeted ML model, and the
training data.

Al model theft in cybersecurity can have severe
consequences, including compromised security, as stolen
models may be used to bypass defenses, leading to
heightened vulnerability. Intellectual property loss results in
financial damages and competitive disadvantages [27].
Privacy breaches occur when models trained on sensitive data
are exposed, risking the confidentiality of personal
information. Organizations may face regulatory penalties for
failing to safeguard their models and data. Additionally,
dealing with model theft can strain resources, diverting
attention from other crucial cybersecurity tasks. Lastly, such
theft undermines trust in Al-based security systems, casting
doubt on their effectiveness and reliability.

Addressing model theft requires robust security measures,
ongoing monitoring, and breach mitigation strategies.
Techniques like model watermarking, differential privacy, and
secure multiparty computation can enhance Al model security
and reduce theft risks.
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Fig. 4. Model theft uses machine learning techniques to acquire information about the ML model illicitly.
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C. Adversarial Attacks

Adversarial attacks significantly limit Al in cybersecurity
by creating inputs that mislead Al models into making
incorrect decisions, thereby reducing the effectiveness of Al-
powered solutions. Figure 5 illustrates adversarial attacks in
the MIMO (Multiple-input multiple-output) system. A MIMO
system is a technology used in wireless communications
where multiple antennas are employed at both the transmitter
and receiver end to improve communication performance by
increasing data throughput and link reliability [9]. Figure 5 is
the result of the cumulative distribution function (CDF) of per-
user spectral efficiencies (SEs) in scenarios with and without
an adversarial attack (specifically, the Basic lterative Method
or BIM), where Al solutions are implemented in both
scenarios. It is evident from the data that the performance of
SE drastically deteriorates under adversarial attacks [4].
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Fig. 5. Effect of adversarial attack on MIMO [4]

In cybersecurity, adversarial attacks manipulate inputs to
deceive Al models, undermining their reliability and
effectiveness and potentially allowing malicious activities to
go undetected. These attacks increase vulnerability to cyber
threats, erode trust in Al systems, and raise ethical and legal
concerns, highlighting the need for ongoing advancements in
defensive techniques to ensure resilience and compliance.

Researchers are exploring strategies to mitigate
adversarial attacks, such as adversarial training, robustness
checks, and new model architectures. Collaboration within the
cybersecurity community is crucial for sharing knowledge on
emerging threats and defenses.

D. Reverse Engineering

In Al and cybersecurity, reverse engineering involves
attackers analyzing Al models to understand their function,
identify vulnerabilities, or extract proprietary information.
Figure 6 illustrates a sample model reverse-engineering
attack.
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Fig. 6. Model reverse-engineering attack

Reverse engineering presents significant challenges for Al
in cybersecurity by exposing vulnerabilities that attackers can
exploit to bypass detection or trigger false positives [10]. This
process also risks intellectual property theft, as proprietary
algorithms and data may be stolen, allowing competitors or
malicious actors to replicate or undermine the model’s
functionality. By understanding an Al system’s decision-
making process, attackers can craft inputs to evade detection,
thereby compromising the system’'s effectiveness and
granting unauthorized access to sensitive data. Additionally,
reverse engineering can lead to the malicious replication of Al
models, enabling the creation of convincing spam or phishing
messages. As Al models increase the attack surface,
additional protections such as obfuscation and tamper-
detection become necessary, though they complicate
deployment and maintenance. These risks raise both legal and
ethical concerns, emphasizing the need to protect intellectual
property while ensuring the security and integrity of Al
systems.
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Addressing reverse engineering requires a multi-layered
approach that combines technical safeguards with legal
protections. Techniques like model obfuscation, secure
enclaves, and legal measures (e.g., copyright and patents) can
protect Al models. Ongoing monitoring and updates are also
essential to identify and address emerging vulnerabilities,
ensuring robust cybersecurity defenses.

E. Privacy Leaks

Privacy leaks in the context of Artificial Intelligence (Al) in
cybersecurity refer to unintended disclosures of sensitive or
personal information through Al models. For instance, model
inversion attacks can reveal sensitive details about training
data from Al outputs, such as personal or proprietary
information. Membership inference attacks might disclose
whether specific data was used in training, exposing individual
data or past security details. Data extraction via prediction
APIs can uncover sensitive information about models or their
training data, while transfer learning risks privacy by
potentially leaking sensitive data in new contexts.
Additionally, insufficient data anonymization and model
overfitting can lead to privacy breaches, exposing personal or
sensitive information.

Privacy leaks in Al-driven cybersecurity can harm
individuals, damage reputations, and lead to legal issues
under regulations like GDPR or CCPA. Mitigating these risks
involves data protection strategies such as minimization,
anonymization, and access controls. Advanced methods like
differential privacy, federated learning, and secure multi-party
computation can further protect privacy while leveraging Al.

lll. IMPACT OF GENERATIVE Al IN CYBERSECURITY

Generative Al, which includes technologies capable of
producing data, content, and simulations that resemble
human-generated output, has significant implications for
cybersecurity and privacy. Its impact is multifaceted, offering
both innovative solutions to enhance security and new
challenges that need careful management. Here are some of
the key aspects of generative Al's impact on cybersecurity and
privacy:

A. Positive Impacts

Generative Al enhances threat detection by simulating
cyber-attacks, identifying vulnerabilities, and strengthening
security measures. It also automates security tasks by
generating configurations and policies, adapting to evolving
threats, and reducing manual workload for dynamic security
management. In addition, generative Al can create realistic
phishing simulations to train users to recognize and respond
to threats. It also supports data privacy by using differential
privacy to produce anonymized datasets, protecting individual
privacy while maintaining data utility for Al training.

B. Negative Impacts

Generative Al can produce sophisticated phishing content
that is difficult to distinguish from legitimate communications,
posing challenges for individuals and security systems [29]. It
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can also create deepfakes, including realistic images, videos,
and audio, leading to impersonation, fraud, and challenges in
identity verification. Additionally, generative Al can create or
modify malware, making it more adaptable and challenging to
detect, thus accelerating the cyber arms race. If trained on
personal data, it may also unintentionally generate outputs
with sensitive information and amplify biases in training data,
leading to unfair or discriminatory outcomes with privacy and
ethical implications.

C. Continuous Risk Mitigation
The dual-edged nature of generative Al's impact on

cybersecurity and privacy necessitates a balanced approach
to its deployment and regulation.

Al Suitability Test

/“ Al Security Policy
Risk Mitigation
Essentials

\ Generative Al Risk

Map

Data Security
Improvement Plan

Fig. 7. Generation Al risk mitigation essentials

Figure 7 highlights generative Al risk mitigation essentials.
Effective risk mitigation requires continuous research into
secure and ethical Al practices, along with the development of
robust defenses against Al-generated threats [23]. It is also
essential to create frameworks that ensure transparency and
accountability in Al systems. Furthermore, international
collaboration is crucial to establish norms and guidelines that
govern the use of generative Al, protecting against its misuse
while leveraging its potential for positive contributions to
cybersecurity and privacy.

[V. PRIVACY AND ETHICAL CONCERNS WITH Al
APPLICATIONS

Privacy and ethical considerations in Al-driven
cybersecurity involve technology, human values, and societal
norms.
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A. Privacy, Bias, Security, and Fairness in Al

Al systems rely on vast amounts of data, raising critical
privacy and consent concerns. Transparent data collection
processes and precise consent mechanisms are essential to
ensure the ethical handling of personal information. Moreover,
Al algorithms can amplify biases in training data, resulting in
discriminatory outcomes. To ensure fairness, Al development
must prioritize bias mitigation, using fairness-aware machine
learning techniques and diverse datasets. Proper
accountability frameworks and compliance with regulations
such as GDPR are crucial for protecting privacy and
maintaining ethical standards.

B. Transparency and Human Control in Al

Al's opaque decision-making processes challenge
transparency, making it essential to develop explainable Al
(XAl) systems that non-experts can understand and assess.
Algorithmic transparency is crucial for ensuring fairness,
allowing users to trace decision-making methods and data
sources. As Al takes on more decision-making roles, there are
growing ethical concerns about eroding human control. Al
should assist, not replace, human decision-making, ensuring
that responsibility remains with humans rather than machines.
Clear audit trails and ethical oversight are necessary to
maintain accountability in these systems.

C. Security and Ethical Al Development

The rapid adoption of Al introduces new security risks,
making robust security measures vital to prevent
vulnerabilities and misuse. Access controls, regular security
assessments, and incident response planning are key to
addressing potential breaches. In addition, the use of Al in
surveillance by governments or corporations raises ethical
concerns about privacy and individual freedoms. Safeguards
must be implemented to protect human rights and avoid
oppressive practices. Ethical Al development also requires
educating developers on cybersecurity, privacy, and ethical
risks during system design, ensuring compliance with
regulations and ethical principles.

V. AI-AUGMENTED CYBER ATTACK SCENARIOS

In this section, we analyze potential attack scenarios, each
based on real-life attacks that have previously occurred. By
incorporating Al capabilities, these scenarios reveal how Al
can be used to enhance the scale and effectiveness of such
attacks, especially in critical sectors.

A. Al-augmented Attacks in Healthcare

In 2017, the WannaCry ransomware attack highlighted the
healthcare sector’s vulnerability to cyber threats, particularly
as it disrupted the UK's NHS [22]. Though not Al-specific, this
incident demonstrated the potential risks to Al-powered
healthcare tools like diagnostic systems and patient
monitoring. Adversarial attacks on Al in medical imaging are
another threat, where slight input modifications can mislead
Al systems into misclassifying benign conditions as
malignant, jeopardizing patient safety and diagnostic
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accuracy. Similarly, Al-powered wearable health trackers are
vulnerable to attacks that could intercept or manipulate
patient data, resulting in incorrect health assessments.
Additionally, Al applications that process electronic health
records (EHR) are at risk of privacy breaches, where
inadequate anonymization or weak access controls can lead
to unauthorized data access. To mitigate these risks,
healthcare providers must strengthen security measures,
including encryption, stringent access controls, and frequent
security audits, to protect patient data and uphold the
reliability of Al-driven healthcare solutions.

B. Al-augmented Attacks in the Financial Industry

The 2010 "Flash Crash" exposed the susceptibility of
financial markets to manipulation via algorithmic trading.
Although these systems aren't fully Al-based, they incorporate
Al in high-frequency trading, raising concerns about the
potential for Al-driven market disruptions and emphasizing the
importance of cybersecurity. Financial institutions depend on
Al-powered fraud detection, yet adversarial attacks can exploit
these systems, enabling fraudsters to evade detection,
resulting in significant financial and reputational harm.
Fintech startups, heavily reliant on Al and big data, are
especially vulnerable to cyberattacks due to the sensitive
financial information they handle. A breach could lead to
identity theft, fraud, and regulatory fines, eroding consumer
trust in Al-based fintech. Additionally, Al trading bots used by
investors can be misused for market manipulation, where
coordinated bot activity inflates stock prices, and regulatory
bodies struggle to mitigate these risks. These scenarios
demonstrate the complex cybersecurity landscape Al
introduces in the financial sector. To address these risks,
financial institutions must focus on encryption, access
controls, and regular threat detection, while regulatory
oversight and collaboration are key to securing an Al-driven
financial ecosystem.

C. Al-augmented Attacks on Autonomous Vehicles

In 2015, researchers successfully hacked a Jeep
Cherokee's infotainment system, gaining remote control over
key functions such as steering and acceleration, underscoring
the cybersecurity risks faced by connected vehicles. As
autonomous vehicles increasingly rely on Al and network
connectivity, these vulnerabilities could be exploited to
jeopardize safety and control systems [26]. Al-powered vision
systems, critical for navigation, are vulnerable to adversarial
attacks where minor modifications to road signs or pedestrian
images can mislead the system, posing significant safety
risks. A malware infection in a fleet of autonomous vehicles
could disrupt essential functions or compromise sensor data,
resulting in accidents or unauthorized access to personal
information. Furthermore, while telemetry data generated by
autonomous vehicles improves Al performance and safety,
breaches of this sensitive data can lead to privacy violations
and identity theft, undermining public trust. These scenarios
highlight the pressing need for robust cybersecurity measures
in autonomous vehicles, requiring collaboration between
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automakers, tech companies, regulators, and experts to
establish security standards, detect threats, and respond to
potential breaches. Continuous research and innovation are
vital to ensuring the resilience of Al-driven vehicle systems.

VI. ENHANCING Al SECURITY WITH EXPLAINABLE Al

In discussing the future of Al security, we examine the role
of Explainable Al (XAl) in improving the security of Internet of
Things (loT) networks through Intrusion Detection Systems
(IDS). Given the complexity and opacity of many machine-
learning (ML) models, transparent and interpretable
predictions are essential for fostering trust and reliability in
decision-making processes [6].

A prominent XAl method is Shapley Additive Explanations
(SHAP), which interprets ML models by using Shapley values
from game theory to fairly allocate contributions among
features. XAl techniques clarify the decision-making
processes of ML models, providing transparency that is
critical for cybersecurity applications where understanding
alerts is crucial for trust and accurate decision-making. SHAP
can be applied to various machine learning models—whether
tree-based, neural networks, or linear models—to explain
individual predictions, while aggregated explanations offer
insights into the model's overall behavior and feature
importance. By fairly distributing feature importance and

providing consistent explanations, SHAP enhances
transparency and builds trust in Al models.
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Fig. 8. Framework of XAl model
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As illustrated in Figure 8, the XAl framework consists of
three phases: Training, Prediction, and Interpretation /
Explanation, where the latter phase focuses on improving
interpretability by analyzing the factors influencing
predictions. This is especially valuable in clinical decision-
making and strengthens cybersecurity by improving attack
detection and promoting effective communication between Al
systems and human analysts in loT networks.

VII. THE FUTURE OF Al CYBERSECURITY: EMERGING

TRENDS

A. Al-Powered Cyber Defense

The future of Al cybersecurity will be shaped by
advancements in Al technologies, innovative solutions, and
collaboration among stakeholders to address emerging
threats as follows.

B. Adversarial Machine Learning

As Al-based defenses evolve, adversaries will leverage Al
to develop increasingly sophisticated cyberattacks.
Adversarial machine learning will present significant
challenges as attackers exploit Al vulnerabilities to evade
detection and manipulate data. Addressing these threats
demands ongoing research into adversarial robustness and
the creation of advanced countermeasures.

C. Explainable Al in Cybersecurity

The rising demand for transparency in Al systems will drive
the implementation of explainable Al (XAl) in cybersecurity.
XAl will enable analysts to understand Al decisions, identify
vulnerabilities, and interpret recommendations, fostering
greater trust, accountability, and collaboration in securing Al
systems.

D. Privacy-Preserving Al Security

With growing concerns over data privacy and regulatory
compliance, privacy-preserving Al techniques will become
vital. Technologies such as federated learning, homomorphic
encryption, and differential privacy will allow for secure data
sharing and analysis without compromising sensitive
information.

E. Cybersecurity for Al Applications

As Al technologies continue to evolve, securing Al systems
will be essential. This will involve protecting models,
algorithms, and training data from tampering or exploitation.
Best practices, including secure development, model
verification, and runtime defenses, will be critical to
maintaining the integrity and reliability of Al systems.

F. Regulatory and Ethical Frameworks

Governments and regulators will play a key role in shaping
Al cybersecurity by developing frameworks, standards, and
guidelines. These frameworks will incorporate ethical
principles such as fairness, accountability, and transparency
to mitigate risks and promote responsible Al use.
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Overall, the future of Al cybersecurity will be characterized
by constant innovation, adaptation, and collaboration to
address evolving cyber threats, safeguarding digital assets,
infrastructure, and individuals in an increasingly Al-driven
world.

CONCLUSION

Cybersecurity concerns in Al applications are complex and
multifaceted, encompassing technical, ethical, and regulatory
challenges. Protecting Al systems from these threats
demands a comprehensive strategy, including strong data
protection, resilience against adversarial attacks, and careful
consideration of the ethical dimensions of Al security. To
prevent Al exploitation, robust security measures, continuous
monitoring, and adversarial training are essential in
addressing vulnerabilities. Shapley Explainable Al plays a key
role by offering transparent and interpretable insights into
model decisions, fostering trust and accountability.
Collaboration among researchers, industry experts, and
policymakers is crucial to developing standards, guidelines,
and best practices for securing Al applications and ensuring
their safe, beneficial use in society.
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