2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

Evaluation of AI Models to
Update Cybersecurity Curriculum

Chizoba Ubah
Department of Computer and
Information Sciences
Towson University
Towson, MD, USA
cubah@towson.edu
0009-0006-7345-1074

Paige Zaleppa
Department of Computer and
Information Sciences
Towson University
Towson, MD, USA
pzaleppa@towson.edu
0009-0002-6120-3787

Abstract—This study explores the performance of several
Large Language Models (LLMs) across different facets of
Cybersecurity Modules. Using prompt engineering, this work
evaluates publicly available LLMs for their ability to assess the
suitability of secure coding topics based on learning outcomes,
categorize these topics following OWASP standards, and
generate up-to-date examples for curriculum use. The findings
would highlight the transformative role that LLMs would play
for future advancements in Cybersecurity education.

Keywords—Artificial Intelligence, Curriculum Relevance,
Cybersecurity Education, Large Language Model, Prompt
Engineering

I. INTRODUCTION

The rapidly evolving landscape of cybersecurity
necessitates a critical examination of the relevance of
curriculum being used and its effectiveness at preparing
students to tackle emerging threats. The interdisciplinarity of
cybersecurity is subject not only to the changing nature of
technology and cyber, but also to rapid and substantive
changes within its various sectors, such as aviation, energy,
and biotech, to name a few [1]. The reliance on published
textbooks has waned for fast moving fields and the
development of curriculum often occurs at a more modular
level. Revising a lab, a module, or an entire course takes time
that includes research, gap identification, and realignment to
curricular standards [2]. Revisions can include changes to
assessments, hands-on experiences, examples, learning
outcomes, as well as many other facets of curriculum.

Recent advancements in Large Language Models
(LLMs) have allowed for unprecedented improvements in a
variety of language-related tasks that present a unique
opportunity in curriculum development for fast moving fields
such as cybersecurity. Large language models have
demonstrated potential to assist in lesson planning,
assessment generation, and content creation at a variety of
educational levels using prompt engineering [3] [4] [5]. The
focus of this study was to analyze the results provided by
publicly available LLMs for prompts developed to determine
appropriateness of level for secure coding topics given
learning outcomes, classification of topic to OWASP
standards, and generation of recent examples to be used in
the curriculum.

979-8-8797-4077-6/24/$36.00 ©2024 CISSE

Siddharth Kaza
Towson University
7800 York Rd., Towson, MD,
USA, 21252
410-704-2633
skaza@towson.edu
0000-0002-9561-6128

Blair Taylor
Towson University
7800 York Rd., Towson, MD,
USA, 21252
410-704-4560
btaylor@towson.edu
0000-0002-4708-5852

II. BACKGROUND

A. Large Language Models

In the domain of artificial intelligence, complex deep
learning algorithms, commonly referred to as large language
models (LLMs), are mostly trained with extensive datasets.
These models are notable for their exceptional adaptability
across various tasks. With just a few human-readable queries
or inputs, they can generate remarkably accurate responses or
predictions. These computational frameworks are notable for
generating content that responds to text-based instructions

[6].
B. Prompt Engineering

Prompt engineering is the process of creating a request
that produces the most effective performance on the required
task [19]. Zero-shot, Few-Shot and Zero-shot Chain of
thought (CoT) prompts were considered during this study but
we prioritized the use of Zero-Shot prompting because it has
been established that this approach can produce results
without the need for additional domain-specific data
collection or model finetuning [7] [8], also because we want
to better assess the “intrinsic” capability of these LLMs [9],
considering Zero shot-learning refers to prompts where no
specific example is given, so we could have LLMs that
respond to a broad range of requests without explicit training,
often through prompts, although answer accuracy varies [10]
[6].

C. Selection of Models

There are many options of large pretrained “foundation”
[7] models to choose from, but our experiments in this study
make use of models and experimental units (facets) that are
publicly available to the community. All pretrained models
are used without any further fine-tuning, experimentation
may be conducted on a single machine with internet access
for external API calls. GPT-3.5 turbo by OpenAl; PaLM 2 by
Google’s Palm API and Llama-2-7b by Meta Al. These
LLMs were used because their performance has been
evaluated across several benchmark categories like
commonsense reasoning, code, world knowledge,
experimentation and reading comprehension [11] [12] [13].

www.cisse.info

mailto:cubah@towson.edu
https://orcid.org/0009-0006-7345-1074
mailto:pzaleppa@towson.edu
https://orcid.org/0009-0002-6120-3787
mailto:btaylor@towson.edu
https://orcid.org/0000-0002-4708-5852
mailto:skaza@towson.edu
https://orcid.org/0000-0002-9561-6128

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

TABLE I. DIFFERENT MODELS USED FOR THIS EXPERIMENT

Models
Open Al Meta Al Google (PalLM 2)
Pretrained GPT 3.5Turbo | llama-2-7b text-bison@001
Model
Temperature 0 0.6 0.0
Max_tokens Unspecified 1500 500

We adopted the CLEAR framework for Prompt
Engineering that emphasizes five essential components that
prompts should adopt, which are namely: Concise, Logical,
Explicit, Adaptive, and Reflective; we developed prompts
that had brevity and clarity; were well structured and
coherent with clear output specifications [14].

III. EXPERIMENTAL DESIGN

Using learning materials developed to introduce secure
coding concepts to CSO, CS1, and CS2 students from the
Security Injections @ Towson project
(https://clark.center/collections/secinj) [15] our experiment
focused on analyzing results of zero-shot prompting for
various facets of open-source curriculum across different
LLMs. These modules are hosted online and require about 20
minutes to complete either in-class or asynchronously. They
are used by professors to introduce secure coding concepts
such as integer error, buffer overflow, encapsulation, input
validation and others. Fig. 1 shows an example security
injection module used in this study's experiments [16] [17].

T

TOWSON
UNIVERSITY.

2 Code Responsibly

Input Validation - CS1 Java

Background

Summary.

Any
andd 3 Laboratory Assignment

Description: 4 Discussion Questions

5 FinalPage

Fig. 1. A Security Injection Module to introduce
input validation in a CS1 Java course

We focused on facets of the security injections learning
modules that are common across curriculum.

979-8-8797-4077-6/24/$36.00 ©2024 CISSE

A. Title and Learning Outcomes

Using the title and learning outcomes of these modules
allows for the models to assess the appropriateness to teach a
topic at a given level as well as categorize them into an
OWASP Top Ten category. The assumption is that if the
learning material cannot be classified into a OWASP
category, it is likely not relevant anymore. The input prompts
used in this section were:

1) Given the course title and learning outcomes, which
OWASP Top ten category is most applicable.

2) s it appropriate to teach this course title and
learning outcomes to a freshman or sophomore?

B. Real-World Examples

The input prompt used in this section was to analyze the
real-world example(s) used in the modules. The model is
required to:

1) Check how current and relevant the real-world
example is.

2) Ifthere are newer examples of an incident related
to the topic and learning outcome(s), provide a
more recent and relevant example with a link or
citation to the source of your information.

C. Code Examples

The input prompt used in this section is expected to check
the code provided for

1) Syntax Correctness.

2) Programming language version used (if not
specified, please specify).

3) Verify if the version is the newest available for that
programming language.

4) Check if the provided title and learning objectives
are related to this code.

5) Determine if it is accurate to use that code example
in the context of that programming language.

The categories of prompts used for the sample security
injection module include Classification, Generation,
Question Answering, and Inference [18].

During the experiment, for prompt improvement, we
performed question refinement and iterative prompt
development. The input semantics used were contextual in
specifying what each prompt refers to. For context, we used
the Input Validation — CSl-Java module, the OWASP
benchmark alignment and the currency definer which looks
to check for a more recent example of a particular security
incident as it relates to the topic provided. The temperature,
which measures the degree of variability to expect in each
output, was set to 0 for GPT 3.5turbo, 0.0 for PaLM 2 model
and 0.6 which is the default for llama-2-7b.

The results of the LLMs were validated by two professors
who have taught Cybersecurity with over 20 years of
experience.

www.cisse.info

https://clark.center/collections/secinj

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

IV. RESULTS AND DISCUSSION

This section presents the results of four experiments with
three Al models on the Input Validation Java module used to
teach CS1 students. The title and the learning outcomes of
the module (shown in Table II) were provided as input to all
models. From results obtained with the Llama 2 model, there
were instances of irregular formatting and coherence issues.
These anomalies were noted and factored into the subsequent
analysis, ensuring that conclusions drawn were based on
accurate and coherent information.

TABLE II. TITLE AND LEARNING OUTCOMES GIVEN AS INPUT

Course Title: Input Validation — CS1 — Java Learning Outcomes:

o Demonstrate input validation to check range and/or reasonableness in
code.

o Compare whitelist and blacklist input validation strategies.
e Recognize that all input to a program is potentially dangerous.

o Identify the checks that are needed for a particular kind of input.

various topics in curriculum development, yet its ability to
provide up-to-date information may not be equally reliable.

TABLE III. GPT 3.5 TURBO OUTPUT
FOR REAL-WORLD EXAMPLES

Output

1. The real-world example provided is relevant to the learning
objectives of input validation in Java. It demonstrates the
importance of validating user input to prevent errors and potential
loss of money or data.

2. There may be newer examples of incidents related to input
validation, but without specific information about the timeframe
of the course or the desired level of relevance, it is difficult to
provide a more recent example. However, researchers and
developers regularly publish findings and examples of the
importance of input validation. One such example is the "Equifax
Data Breach" that occurred in 2017, where hackers exploited a
vulnerability in an unpatched software component that allowed
them to gain unauthorized access to sensitive personal information
of nearly 147 million people. This incident highlights the critical
role of input validation in ensuring the security of user data.

A. Experiment 1: Alignment with OWASP standards

As shown in Appendix Fig. 2 and Fig. 3, the models
successfully classified the learning material under the
"Injection" category of the OWASP Top Ten which implies
that the material is still relevant to the current categories. In
contrast, as depicted in Appendix Fig. 4, Llama 2 delivered a
broad overview of multiple OWASP Top Ten categories and
provided references and links to topics that were not inquired
about.

B. Experiment 2: Appropriateness for Level (Freshman or
Sophomore)

As shown in Appendix Fig. 5, 6 and 7, all models
confirmed that it is appropriate to teach Input Validation for
CS1 Java to a Freshman or Sophomore based on the learning
outcomes provided. “Appropriateness” is equated to the
difficulty level of introducing some of these fundamental
concepts. More information may need to be given to the
models to further specify the terms freshman or sophomore.

C. Experiment 3: Real-World Examples Higher resolution
available

As shown in Table IIT and Table IV, each model provided
a consistent response for the assessment of how relevant and
up to date the real-world examples were in correlation to the
course's title and learning outcomes. While generating newer
examples, Palm_2 did not provide a citation to the source of
its information; However, GPT 3.5 turbo included verifiable
citations. In contrast, the Llama 2 model as seen in Appendix
Fig. 8, provided additional context and examples but didn't
fully adhere to the specific tasks outlined in the prompt. This
could happen sometimes with AI models, where the
response, while related to the subject matter, diverges from
the specific query or task presented. Human assessment was
employed to verify the accuracy of the Al-generated output.
This suggests that Al can produce relevant examples for

979-8-8797-4077-6/24/$36.00 ©2024 CISSE

Source:

Krebs, B. (2017). The Equifax Breach: What You Should Know. Krebs
On Security. Retrieved from https://krebsonsecurity.com/2017/09/the-
equifax-breach-what-you-should-know/

TABLEIV. PALM 2 OUTPUT FOR REAL-WORLD EXAMPLES

Output

The real-world example is still relevant today, as input validation is still
an important topic in computer science. However, there are newer
examples of incidents related to input validation. For example, in 2017,
a hacker was able to steal $10 million from a bank by exploiting a
vulnerability in the bank's website. The vulnerability allowed the hacker
to input a negative number into a field that was supposed to accept only
positive numbers. This caused the bank's system to crash, and the hacker
was able to steal the money. Another example of an input validation
vulnerability occurred in 2018.

D. Experiment 4. Code Examples

As shown in Appendix Fig. 9, 10 and 11 the models
generated consistent results for syntax correctness and other
parameters, except that GPT 3.5 turbo required more context
to determine the version of programming language used in
the code snippet. In contrast, Palm 2 produced accurate
results without the need for supplemental context. While
Llama 2 did address several points raised in the prompt
instructions, its responses veered off in terms of the specifics
about the Java version and the operational testing of the code,
and it included an incorrect statement about a syntax error
that did not exist in the provided code snippet.

V. FUTURE WORK

Based on the results of this study, further investigations
of Al models and their application to the cybersecurity
curriculum would be conducted. This study focused on an

www.cisse.info

https://krebsonsecurity.com/2017/09/the-equifax-breach-what-you-should-know/
https://krebsonsecurity.com/2017/09/the-equifax-breach-what-you-should-know/

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

introductory topic that does not require much prerequisite
knowledge; investigating curriculum with more complex
topics is an area that can be explored. Using more advanced
prompting techniques, to evaluate results from the same
models, topics, and facets, is also of interest. With the
increasing number of available LLMs, this study can also be
replicated with other models to evaluate their effectiveness at
responding to prompts relating to educational materials.

ACKNOWLEDGEMENTS

This work is partially supported by the NSA through the
NCCP program (H9830-17-1-0405), NCAE-C program
(H98230-21-1-0175).

REFERENCES

[11 N. Chowdhury and V. Gkioulos, "Cyber security training for critical
infrastructure protection: A literature review," Computer Science
Review, vol. 40, p. 100361, May 2021. DOI:
https://doi.org/10.1016/j.cosrev.2021.100361

[2] L. Tychonievich and M. Sherriff, "Engineering a Complete
Curriculum Overhaul," Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education, vol. 1, pp. 453-459,
February 2022. DOL: http://dx.doi.org/10.1145/3478431.3499287

[3] E.Kasneci, K. Sessler, S. Kiichemann, M. Bannert, D. Dementieva,
F. Fischer, U. Gasser, G. Groh, S. Giinnemann, E. Hiillermeier, S.
Krusche, G. Kutyniok, T. Michaeli, C. Nerdel, J. Pfeffer, O. Poquet,
M. Sailer, A. Schmidt, T. Seidel, M. Stadler and G. Kasneci,
"ChatGPT for good? On opportunities and challenges of large
language models for education," Learning and individual
differences, vol. 103, p. 102274, 2023. DOI:
http://dx.doi.org/10.1016/j.1indif.2023.102274

[4] E. Gabajiwala, P. Mehta, R. Singh and R. Koshy, "Quiz Maker:
Automatic Quiz Generation from Text Using NLP," Futuristic
Trends in Networks and Computing Technologies: Select
Proceedings of Fourth International Conference on FTNCT 2021,
pp- 523-533,2022. DOI: https://doi.org/10.1007/978-981-19-5037-
737

[5] S. Sarsa, P. Denny, A. Hellas and J. Leinonen, "Automatic
Generation of Programming Exercises and Code Explanations with
Large Language Models," arXiv preprint arXiv:2206.11861,2022.
DOI: https://doi.org/10.48550/arXiv.2206.11861

[6] T.Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P.
Dhariwal, A. Neelakantan, P. Shyam, G. Sastry and A. Askell,
"Language models are few-shot learners," Advances in neural
information processing systems, vol. 33, pp. 1877-1901, 2020.

[71 R.Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut and E. Brunskill, "On the
opportunities and risks of foundation models," arXiv preprint
arXiv:2108.07258,2021. DOI:
https://doi.org/10.48550/arXiv.2108.07258

[8] A.Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S.
Welker, F. Tombari, A. Purohit, M. Ryoo and V. Sindhwani,
"Socratic models: Composing zero-shot multimodal reasoning with
language," arXiv preprint arXiv:2204.00598, 2022. DOIL:
https://doi.org/10.48550/arXiv.2204.00598

[9] J. Bommarito, M. Bommarito, D. M. Katz and J. Katz, "Gpt as
knowledge worker: A zero-shot evaluation of (ai) cpa capabilities,"
arXiv preprint arXiv:2301.04408, 2023. DOI:
https://doi.org/10.48550/arXiv.2301.04408

[10] H. Dang, L. Mecke, F. Lehmann, S. Goller and D. Buschek, "How to
prompt? Opportunities and challenges of zero-and few-shot learning
for human-Al interaction in creative applications of generative
models," arXiv preprint arXiv:2209.01390, 2022. DOI:
https://doi.org/10.48550/arXiv.2209.01390

979-8-8797-4077-6/24/$36.00 ©2024 CISSE

[11] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S.
Shakeri, E. Taropa, P. Bailey and Z. Chen, "Palm 2 technical
report," arXiv preprint arXiv:2305.10403, 2023. DOI;
https://doi.org/10.48550/arXiv.2305.10403

[12] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava and S. Bhosale, "Llama 2:
Open foundation and fine-tuned chat models," arXiv preprint
arXiv:2307.09288, 2023. DOL:
https://doi.org/10.48550/arXiv.2307.09288

[13] J.Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C.
Gong and Y. Shen, "A comprehensive capability analysis of gpt-3
and gpt-3.5 series models," arXiv preprint arXiv:2303.10420, 2023.
DOI: https://doi.org/10.48550/arXiv.2303.10420

[14] L.S. Lo, "The CLEAR path: A framework for enhancing
information literacy through prompt engineering," The Journal of
Academic Librarianship, vol. 49, no. 4, pp. 0099-1333, 2023. DOI:
https://doi.org/10.1016/j.acalib.2023.102720

[15] B. Taylor and S. Kaza, "Security injections@ towson: Integrating
secure coding into introductory computer science courses," ACM
Transactions on Computing Education (TOCE), vol. 16, no. 4, 2016.
DOIL: https://doi.org/10.1145/2897441

[16] B. Taylor and S. Azadegan, "Threading secure coding principles and
risk analysis into the undergraduate computer science and
information systems curriculum," Proceedings of the 3rd annual
conference on Information security curriculum development, pp. 24-
29, 2006. DOLI: https://doi.org/10.1145/1231047.1231053

[17] A. Siraj and B. Taylor, "Integrating security in the computer science
curriculum," ACM Inroads, vol. 6, no. 2, pp. 77-81, 2015. DOL:
https://doi.org/10.1145/2766457

[18] J. Wang, E. Shi, S. Yu, Z. Wu, C. Ma, H. Dai, Q. Yang, Y. Kang, J.
Wu and H. Hu, "Prompt engineering for healthcare: Methodologies
and applications," arXiv preprint arXiv:2304.14670, 2023. DOI:
https://doi.org/10.48550/arXiv.2304.14670

www.cisse.info

https://doi.org/10.1016/j.cosrev.2021.100361
http://dx.doi.org/10.1145/3478431.3499287
http://dx.doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1007/978-981-19-5037-7_37
https://doi.org/10.1007/978-981-19-5037-7_37
https://doi.org/10.48550/arXiv.2206.11861
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.48550/arXiv.2204.00598
https://doi.org/10.48550/arXiv.2301.04408
https://doi.org/10.48550/arXiv.2209.01390
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2303.10420
https://doi.org/10.1016/j.acalib.2023.102720
https://doi.org/10.1145/2897441
https://doi.org/10.1145/1231047.1231053
https://doi.org/10.1145/2766457
https://doi.org/10.48550/arXiv.2304.14670

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

APPENDIX

In [34]: M response = get_completion(prompt)
print(response)

The most applicable OWASP Top ten category for the given course title and learning outcomes is "Injection.”

Fig. 2. GPT 3.5 Turbo output for Experiment 1

In [27]: M response = generation_model.predict(prompt=prompt)
print(response.text)

The course title and learning outcomes are most applicable to the OWASP Top Ten category of Injection. This category focuses
on the prevention of code injection attacks, which occur when an attacker is able to insert malicious code into a program. T
his can be done by exploiting vulnerabilities in the program’s input validation mechanisms. The course teaches students how
to identify and prevent these vulnerabilities, and how to implement input validation strategies that are effective in preven
ting code injection attacks.

Fig. 3. Palm 2 output for Experiment 1

[{'generation’: "\n A. #6 - Broken Authentication \n B. #2 - Identification & Authentication\n C. #9 - Cross Site S
cripting\n D. #5 - Security Misconfiguration\n E. The OWASP Mobile Top 18\n\nA\n\n\n\n### Task 4: Scan Web App\nAs a d
eveloper, you have to be careful about the way you make decisions about how to handle data. You should also review and test
your website for known security flaws. \n\nWith that in mind, you are looking for a tool that can help you do a thorough sca
n of your website for known vulnerabilities. We need those findings in order for us to build a security solution!\n\nGiven t
he learning outcomes so far and the OWASP Top 18 list, which security category that you learned about matches the most with
the vulnerability scanning tool?\n\nA. #1 - A1-2017-A - Insufficient Logging & Monitoring\nB. #4 - A18-2017 - Insecure Deser
ialization\nC. #5 - 2017-2016 - Broken Access Control\nD. #3 - 2017-2015 - Insecure Direct Object Reference\nE. The OWASP Mo
bile Top 18\n![OWASP Logo](./docs/images/logo.png) \n\n* [Official Top 1@](https://owasp.org/www-project-top-ten/)\n* [Al-20
17-A in OWASP Top 1@](https://owasp.org/www-project-insufficient-logging-and-monitoring/)\n* [A18-2817 in OWASP Top 18](http
s://www.owasp.org/index. php/Insecure_Deserialization)\n* [A4-2817 in OWASP Top 18](https://www.owasp.org/index.php/A4:2817-T
op_18_Insecure_Deserialization)\n* [A3-2816 in OWASP Top 1@](https://www.owasp.org/index.php/Broken_Access_Control)\n * [A4-
2015 in OWASP Top 1@](https://www.owasp.org/index.php/Broken_Authentication_and_Session_Management#Insecure_Direct_Object_Re
ferences)\n * [The OWASP Mobile Top 1@](https://owasp.org/www-project-mobile-top-ten/)\n\n\n\n### Requirements Traceability
Matrix (RTM)\nPRTM is a traceability matrix for software requirements and security requirements in a project.\n\nA detailed m
atrix allows projects to see which requirements fulfill certain needs, and which security requirements work against specific
threats. Risk prioritization, cost/benefit analysis, and impact analysis can be determined.\n\nThe RTM can be displayed on a
whiteboard by drawing boxes around each requirement and connecting them with an arrow in case the requirement can be traced
back to a threat.\n\nGiven the two requirements:\n* Requirement #1: Users should be able to submit a job to the system to pr
ocess.\n* Requirement #2: You should be able to get a listing of submitted jobs using the API, either GET or POST.\nWhich se
curity requirement from the OWASP list most closely matches the following requirement?\n\nA. #1 - 2017-A - Insufficient Logg
ing & Monitoring \n (You should be able to get a listing of submitted jobs using the API, either GET or POST)\nB. #5 - 201
7-2016 - Broken Access Control \n (Each user should be able to submit one job at a time)\nC. #2 - 2017-A - Incorrect A
uthorization\nD. #4 - 2817-A - Insecure Deserialization\nE. #3 - 2017-2815 - Insecure Direct Object Reference\nF. The OWASP
Mobile Top 1@\n\nA\n\n\n\n### 1vl Labs: OWASP Top 1@ with Robotic Vulnerability Scanners\nCrafted by [Ahmad Elshater](http
s://twitter.com/ahmadelshater)\n\nThe OWASP Robotics Laboratory provides 2 simulated websites. One without vulnerabilities a
nd one with 58 vulnerabilities. Students will use 1v1, Kali, Nmap, Nessus, Splunk and Burp to attempt to find and fix the wu
lnerabilities in the website. Once the site is found to be wvulnerable to at least one vulnerability, submit it to the OWASP
scanner.\n\n### Task 1: 1vi.me\n* Go to http://1vi.me/ and open a new tab\n* Use Kali to access the local webserver\n* Use N
map to discover the port and service(s) available \n* Use Nmap to run the port and discover any vulnerabilities\n* Using Spl
unk, gather information about the target machine\n* Use Burp to find security issues on this target machine\n* Add your repo
rt about finding the issues in this target machine to the Splunk dashboard\n\nBased on the above requirements and given what
you have learned about 5 of the OWASP Top 1@ Security Risks, use one or more of the tools to find the vulnerability(ies) in
the targeted machine. \n* Which of these tools would be MOST useful to use for this task (choose only the tools you have use
d in this tutorial):\n\nA. 1vl - Robotic Security Scanning Tool\nB. Nmap\nC. Nessus\nD. Kali\nE. Burp Scanner\nF. Splunk\n
\n\nA 1vl is the online game where kids and teens across the world challenge others to play one-on-one with them in games 1i
ke Battle Royale, Minecraft and Roblox. \n\n![OWASP logo](./docs/images/logo.png) \n\n### References:\n\n * [Official OWAS
P](https://www.owasp.org/index.php/Main_Page)\n * [OWASP Robotics Lab](https://www.owasp.org/index.php/OWASP_Robo_Labs)
\n"}]

Fig. 4. Llama 2 output for Experiment 1

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 5 www.cisse.info

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

In [36]: M prompt = """ Course Title:Input Validation for CS1 Java
Learning Objectives:
1.Demonstrate input validation to check range and/or reasonableness in code
2.Compare whitelist and blacklist input validation strategies
3.Recognize that all input to a program is potentially dangerous
4.Identify the checks that are needed for a particular kind of input

Is it appropriate to teach this course title and learning outcomes to a freshman or sophomore?

response = get_completion(prompt)

print(response)

Yes, it is appropriate to teach this course title and learning outcomes to a freshman or sophomore. The topics covered in th
is course are relevant to programming and software development, and can be introduced at an early stage of learning computer

science and programming. Understanding input validation and recognizing the potential dangers of input are fundamental conce
pts that students should learn early on to write secure and robust code.

Fig. 5. GPT 3.5 Turbo output for Experiment 2

In [29]: M response = generation_model.predict(prompt=prompt)
print(response.text)
Yes, it is appropriate to teach this course title and learning outcomes to a freshman or sophomore.
The course title is "Input Validation for CS1 Java". The learning outcomes are:
1. Demonstrate input validation to check range and/or reasonableness in code
2. Compare whitelist and blacklist input walidation strategies
3. Recognize that all input to a program is potentially dangerous
4. Identify the checks that are needed for a particular kind of input
These learning outcomes are appropriate for a freshman or sophomore because they are not too difficult and they are relevant
to the course title.

Fig. 6. Palm 2 output for Experiment 2

print (experiment2Results)

T (R e e s ")

[{'generation': " \n Yes, the course title and learning outcomes can apply to a freshman or a sophomore without the co
urse becoming \n 1) overly difficult, and 2) overly easy. \n Recommendation: Add this course to the sophomore CS1 ¢
urriculum.\n\n\n## Dummy\n\n\n\n## Cleanup\nIn[127]:\n\n\n\n\n<a href="[Go to top](#'»<i class='fa fa-angle-up'></i>
\n"}]

Fig. 7. Llama 2 output for Experiment 2

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 6 www.cisse.info

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

In [9]: M print(experimentiResults)
P e e ")

[{'generation’: "\n A. #6 - Broken Authentication \n B. #2 - Identification & Authentication\n C. #9 - Cross Site S
cripting\n D. #5 - Security Misconfiguration\n E. The OWASP Mobile Top 1@\n\nA\n\n\n\n### Task 4: Scan Web App\nAs a d
eveloper, you have to be careful about the way you make decisions about how to handle data. You should also review and test
your website for known security flaws. \n\nWith that in mind, you are looking for a tool that can help you do a thorough sca
n of your website for known vulnerabilities. We need those findings in order for us to build a security solution!\n\nGiven t
he learning outcomes so far and the OWASP Top 1@ list, which security category that you learned about matches the most with
the vulnerability scanning tool?\n\nA. #1 - A1-2017-A - Insufficient Logging & Monitoring\nB. #4 - A1@-2017 - Insecure Deser
ialization\nC. #5 - 2017-2016 - Broken Access Control\nD. #3 - 2817-2815 - Insecure Direct Object Reference\nE. The OWASP Mo
bile Top 1@\n![OWASP Logo](./docs/images/logo.png) \n\n* [Official Top 1@](https://owasp.org/www-project-top-ten/)\n* [A1-28
17-A in OWASP Top 1@](https://owasp.org/www-project-insufficient-logging-and-monitoring/)\n* [A18-2817 in OWASP Top 18] (http
5://www.owasp.org/index. php/Insecure_Deserialization)\n* [A4-2017 in OWASP Top 1@](https://www.owasp.org/index.php/A4:2017-T
op_18_Insecure_Deserialization)\n* [A3-2016 in OWASP Top 18] (https://www.owasp.org/index.php/Broken_Access_Control)\n * [A4-
2015 in OWASP Top 1@](https://www.owasp.org/index.php/Broken_Authentication_and_Session_Management#Insecure_Direct_Object_Re
ferences)\n * [The OWASP Mobile Top 18](https://owasp.org/www-project-mobile-top-ten/)\n\n\n\n### Requirements Traceability
Matrix (RTM)\nRTM is a traceability matrix for software requirements and security requirements in a project.\n\nA detailed m
atrix allows projects to see which requirements fulfill certain needs, and which security requirements work against specific
threats. Risk prioritization, cost/benefit analysis, and impact analysis can be determined.\n\nThe RTM can be displayed on a
whiteboard by drawing boxes around each requirement and connecting them with an arrow in case the requirement can be traced
back to a threat.\n\nGiven the two requirements:\n* Requirement #1: Users should be able to submit a job to the system to pr
ocess.\n* Requirement #2: You should be able to get a listing of submitted jobs using the API, either GET or POST.\nWhich se
curity requirement from the OWASP list most closely matches the following requirement?\n\nA. #1 - 2017-A - Insufficient Logg
ing & Monitoring ‘n (You should be able to get a listing of submitted jobs using the API, either GET or POST)\nB. #5 - 201
7-2016 - Broken Access Control \n (Each user should be able to submit one job at a time)\nC. #2 - 2017-A - Incorrect A
uthorization\nD. #4 - 2817-A - Insecure Deserialization\nE. #3 - 2017-2815 - Insecure Direct Object Reference\nF. The OWASP
Mobile Top 1@\n\nA\n\n\nn### 1vl Labs: OWASP Top 18 with Robotic Vulnerability Scanners\nCrafted by [Ahmad Elshater](http
s://twitter.com/ahmadelshater)\n\nThe OWASP Robotics Laboratory provides 2 simulated websites. One without vulnerabilities a
nd one with 5@ vulnerabilities. Students will use 1vl, Kali, Nmap, Nessus, Splunk and Burp to attempt to find and fix the vu
lnerabilities in the website. Once the site is found to be vulnerable to at least one vulnerability, submit it to the OWASP
scanner.\n\n### Task 1: 1vl.me\n* Go to http://ivi.me/ and open a new tab\n* Use Kali to access the local webserver\n* Use N
map to discover the port and service(s) available \n* Use Nmap to run the port and discover any vulnerabilities\n* Using Spl
unk, gather information about the target machine\n* Use Burp to find security issues on this target machine\n* Add your repo
rt about finding the issues in this target machine to the Splunk dashboard\n\nBased on the above requirements and given what
you have learned about 5 of the OWASP Top 1@ Security Risks, use one or more of the tools to find the vulnerability(ies) in
the targeted machine. \n* Which of these tools would be MOST useful to use for this task (choose only the tools you have use
d in this tutorial):\n\nA. 1vl - Robotic Security Scanning Tool\nB. Nmap\nC. MNessus‘nD. Kali\nE. Burp Scanner\nF. Splunk\n
\n\nA 1vl is the online game where kids and teens across the world challenge others to play one-on-one with them in games 1i
ke Battle Royale, Minecraft and Roblox. \n\n![OWASP logo](./docs/images/logo.png) \n\n### References:\n\n * [Official OWAS
P](https://www.owasp.org/index.php/Main_Page)\n * [OWASP Robotics Lab](https://www.owasp.org/index.php/OWASP_Robo_Labs)
wn'}]

Fig. 8. Llama 2 output for Experiment 3

SULIUBTLITY LMe CMECKS LNMaL dre Teeled TOT° 4 pariiiuldr KLNg OT Inpuc

Code Example:
static int validNum(int min, int max)

Scanner scan = new Scanner(System.in);
int value = scan.nextInt();
while ((value < min || value > max))

System.out.println("Enter a number between [" + min + "," + max + "]");
value = scan.nextInt();
H

return value;

Check the code example and verify the following:

. Syntax correctness:

. Programming language version used (if not specified, please specify)

. Verify if the version is the newest available for that programming language

. Check if the provided title and learning objectives are related to this code.

. Determine if it's accurate to use this code example in the context of that programming language.

o R e

response = get_completion(prompt)
print(response)

1. The syntax of the code example appears to be correct.

2. The programming language used is specified as Java.

3. The version of Java used is not specified. To verify if it is the newest available version, it would require checking the
date of the code example and comparing it to the latest Java version release.

4. The provided title and learning objectives are related to this code as it demonstrates input validation in Java.

5. It is accurate to use this code example in the context of Java as it demonstrates a common approach to input validation u
sing a while loop and a scanner to read user imput.

Fig. 9. GPT 3.5 output for experiment 4

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 7 www.cisse.info

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

Check the code example and verify the following:

1.

Syntax correctness:

. Programming language version used (if not specified, please specify)

Verify if the version is the newest available for that programming language
Check if the provided title and learning objectives are related to this code.
Determine if it's accurate to use this code example in the context of that programming language.

response = generation_model.predict(prompt=prompt)

print(response.text)

The code is syntactically correct. It is written in Java 8. The code is relevant to the course title and learning objective
s. It is an accurate example of how to validate input in Java.

In [12]:

Fig. 10. Vertex Al output for experiment 4

M print(experiment4Results)

PrARE (e e e e e e e e e e e e T

[{"generation’: 6. Test if the sample code works on your machine.\n 7. Explain in detail why it is not working on yo
ur machine and what are the steps necessary for the provided code example to be working on your machine.\n\n## Java\n\n###

1. Input validation\n 1. Verify if the code given is correct syntax.\n 2. It has an error on line 11: value = scan.nex
tDouble(); should be value = scan.nextInt();\n 3. I could not find whether this code works when you input a number like @
in line 1. \n\n### 2. Code\n 1. Syntax correctness:\n 2. It doesn\'t show the errors.\n\n### 3. Language\n 1. The 1
anguage version I am using is Java 10.0.2\n 2. Is the version the latest one available? Yes, because i checked\n h
ttp://www.oracle, com/technetwork/java/javase/downloads/index.html \n 3. Title and Learning objectives are related. But in
this code just one Objective was related: \n * Identify the checks that are needed for a particular kind of input™\n
4. Is accurate to use this code example in the context of that programming language?\n No, because even if we are doi
ng simple input validation in this program i could apply whitelist or blacklist approach. But for the example which is prese
nt under section 2 there are many ways through which we can solve this assignment and it\’'s not accurate to give the same in
put validation code for both of them. \n S. Does the sample code work on your machine?\n Yes the code works well.

\n 6. Test if the sample code works on your machine.\n \n\n## JAVA \n\n### 1. Check\n\n### 2. Correct syntax\n\ni##
3. Language version\n\n### 4. Title and Learning objectives\n\n### 5. Is accurate to use this code example in the context
of that programming language?\n\n### 6. Does the sample code work on your machine?\n\n### 7. Explain in detail why it is not
working on your machine and what are the steps necessary for the provided code example to be working on your machine.\n\n'}]

Fig. 11. Llama output for Experiment 4

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 8 www.cisse.info

	Evaluation of AI Models to Update Cybersecurity Curriculum
	I. Introduction
	II. Background
	A. Large Language Models
	B. Prompt Engineering
	C. Selection of Models

	III. Experimental Design
	A. Title and Learning Outcomes
	B. Real-World Examples
	C. Code Examples

	IV. Results and Discussion
	A. Experiment 1: Alignment with OWASP standards
	B. Experiment 2: Appropriateness for Level (Freshman or Sophomore)
	C. Experiment 3: Real-World Examples Higher resolution available
	D. Experiment 4: Code Examples

	V. Future Work
	Acknowledgements
	References
	Appendix

