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Abstract—Students, especially those outside the field of 
cybersecurity, are increasingly turning to Large Language 
Model (LLM)-based generative AI tools for coding assistance. 
These AI code generators provide valuable support to 
developers by generating code based on provided input and 
instructions. However, the quality and accuracy of the 
generated code can vary, depending on factors such as task 
complexity, the clarity of instructions, and the model’s 
familiarity with the programming language. Additionally, 
these generated codes may inadvertently utilize vulnerable 
built-in functions, potentially leading to source code 
vulnerabilities and exploits. This research undertakes an in-
depth analysis and comparison of code generation, code 
completion, and security suggestions offered by prominent AI 
models, including OpenAI CodeX, CodeBert, and ChatGPT. 
The research aims to evaluate the effectiveness and security 
aspects of these tools in terms of their code generation, code 
completion capabilities, and their ability to enhance security. 
This analysis serves as a valuable resource for developers, 
enabling them to proactively avoid introducing security 
vulnerabilities in their projects. By doing so, developers can 
significantly reduce the need for extensive revisions and 
resource allocation, whether in the short or long term. 
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I. INTRODUCTION 
Natural language processing (NLP) models that can 

understand the intent of a query and search through large 
datasets of code snippets to find relevant matches have a wide 
range of potential applications in both education and 
industry. 

Code generation models can improve programming 
education and provide personalized learning experiences 
based on individual needs and learning styles [1]. They can 
improve the efficiency and effectiveness of software 
development, improve software testing and quality 
assurance, source code vulnerability detection, and 
accessibility testing [2]. 

Although these models have been shown to substantially 
enhance code-authoring performance without compromising 
developers’ ability to perform manual code-modification 
tasks [18], there are also drawbacks and concerns associated 
with their usage. One potential disadvantage of using them 
for code search and discovery is that developers may become 

over-reliant on the models. If users rely too heavily on the 
models to find solutions to coding problems, they may not 
develop the critical thinking skills and problem-solving 
abilities needed to become effective programmers. 
Furthermore, since the accuracy of these models can vary 
depending on the quality of the training data, there is a risk 
that developers may be provided with inaccurate or 
incomplete information [3]. Secure coding, also known as 
secure programming, involves writing robust code to prevent 
potential security vulnerabilities. Secure coding is not only 
about developing high-quality code. It also requires creating 
a secure environment and utilizing a secure platform. 
However, neither state-of-the-art technologies nor the 
education system emphasize the significance of source code 
vulnerability analysis or equips developers with practical 
exposure and adequate tools/techniques [4]. 

This research, by analyzing the privacy implications of 
code searching and generating AI models, aims to identify 
potential privacy risks and take steps to mitigate them. 
Examining the privacy implications of code snippet-
generating AI models is vital to guarantee these technologies’ 
secure and ethical utilization. It can also assist developers in 
gaining a more comprehensive understanding of the potential 
hazards associated with their implementation, especially 
when deciding how to integrate models into their 
development processes. 

The rest of this paper is organized as follows. Section II 
presents an overview of the related work for AI/NLP code 
search and discovery models and their use cases. A detailed 
description of the security vulnerability tests in code snippets, 
methodology, and performed analysis is provided in Section 
III. Preliminary results and discussion of the findings are 
presented in Section IV. Finally, Section V provides the 
conclusion and future works. 

II. RELATED WORK 
Semantic code search and code-generating AI models 

have been an area of active research in recent years due to 
their potential to improve software development productivity 
and quality [5]. Code snippet search involves finding code 
snippets from a large corpus of code repositories that are 
relevant to a specific programming task. Furthermore, code-
generating AI models are designed to automate the process 
of code generation by learning from existing code [6]. These 
tools can be used to help programmers find code snippets that 
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can be reused or modified for their specific task and generate 
code for various programming tasks, such as bug fixing, 
refactoring, and code synthesis, thus reducing development 
time and effort. One of the most common approaches for 
code snippet search is to use text-based search techniques, 
such as keyword matching or regular expressions, to find 
code snippets that match a given query [7]. CodeHow, is a 
code snippet search model that uses natural language queries 
and deep learning techniques to retrieve relevant code 
snippets using both semantic similarity and potential APIs on 
code search [8]. CodeHow is deployed as the backend of 
Microsoft Azure service and is available as a front-end 
service extension on Visual Studio. CodeHow achieves a 
Mean Reciprocal Rank (MRR) score of 0.86%. 

One of the earliest works in code generation AI models is 
DeepCoder, proposed by Balog et al. [9]. DeepCoder is a 
system that automatically generates code from a high-level 
specification provided as an input-output example and has 
achieved an accuracy of 28.2%. Code2Vec, proposed by 
Alon et al. [10] is a neural network-based model that learns 
distributed representations of code snippets and uses them to 
generate code by mapping each snippet to a vector 
representation, achieving an accuracy of 72%. A team of 
researchers from OpenAI proposed GPT-2, a large-scale 
language model that can generate natural language text [11]. 
While not specifically designed for code generation, GPT-2 
has been shown to be capable of generating high-quality code 
snippets given a natural language prompt and has achieved 
an accuracy of 0.83%. IntelliCode Compose was proposed as 
a general-purpose multilingual code completion tool that is 
capable of predicting sequences of code tokens of arbitrary 

types, generating up to entire lines of syntactically correct 
code, achieving an edit similarity of 86.7% [12]. 

Given the increasing importance of vulnerability-free 
source code in the software development life cycle and the 
growing trend of using AI technology in organizations, this 
study explores the potential applications and limitations of 
code-generating AI models for educational and academic 
purposes. This will be achieved through an in-depth analysis 
of the strengths and limitations of these tools and the 
improvement of the generated code using prompt 
engineering techniques. 

III. METHODOLOGY 
The approach taken in this work is partially based on our 

previous efforts in developing a personalized learning 
framework for software vulnerability detection and education 
[4]. Following the concept of Secure Software Development 
Life Cycle (SSDLC), in this work, we have examined and 
used CodeBERT, GPT 3.5, and CodeX to replicate real-life 
vulnerability scenarios that were raised from unpatched 
source codes that included CVE and NVD vulnerability 
examples. We then scanned both the AI replicated code and 
the previously designed unpatched source codes for 
vulnerabilities on GPT 3.5. This allowed us to understand the 
effectiveness and accuracy of the code-generating AIs, thus 
helping developers to learn essential skills to use such tools. 
Fig. 1 presents a general overview of our approach. The rest 
of this section will present an overview of the code 
generation models’ behavior and the vulnerabilities tested on 
them. 

 
Fig. 1. Overview of the Approach 
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A. Experimental Setup 
Our research is structured into three distinct experimental 

categories, each focusing on code analysis and enhancement 
aspects. In the first category, we leveraged the capabilities of 
CodeBERT, an advanced language model designed primarily 
for code retrieval and generation tasks. Within this category, 
we provided CodeBERT with code snippets exemplifying 
potential vulnerabilities as single-function C files, and we 
further enhanced the model’s functionality by developing a 
utility function. This utility function was designed to predict 
masked functions or variables, enabling CodeBERT to 
generate recommendations for more secure built-in functions 
capable of mitigating potential vulnerabilities. 

In the second category, we harnessed the power of 
CodeX, an advanced code generation tool, to create code 
snippets. These code snippets were intentionally designed to 
implement functionalities that exemplify vulnerabilities and 
security risks commonly encountered in software code. By 
utilizing CodeX’s specialized capabilities, our objective was 
to assess the security of the generated code when 
incorporating the specified functionalities. The third category 
focused on assessing the security level of the generated code 
snippets. To accomplish this, we employed a combination of 
static analysis tools and GPT 3.5. While GPT 3.5 is not 
inherently designed for code-related tasks, it plays a crucial 
role in generating detailed and informative responses to 
queries about code. Additionally, GPT 3.5 offered valuable 
insights into code functionality and suggested ways to 
enhance its security. This multifaceted approach allowed us 
to comprehensively evaluate the security aspects of the 
generated code, providing a holistic perspective on code 
vulnerability and potential mitigation strategies. 

Upon completing the experiments, we formulated a set of 
practical, hands-on labs to demonstrate the utilization of 
code-generating AI tools within the context of secure coding 
practices. In the subsequent section, we provide in-depth 
information regarding the vulnerabilities discovered and 
elaborate on the hands-on lab activities. 

B. Tested Vulnerabilities & Hands-on Labs 
In our previous work [4], we established a Personalized 

Learning Framework for Software Vulnerability Detection, 
which included a dataset comprising code snippets 
showcasing the most prevalent source code vulnerabilities, 
common CVEs, CWEs, NIST vulnerabilities, and OWASP’s 
top 10 web application security risks. Utilizing these code 
snippets and their corresponding functionalities, we 
leveraged code-generating AI tools to introduce 
vulnerabilities like format string attacks, invalid string 
formats, and instances of undefined behavior due to 
unsequenced modification and variable access. 

Subsequently, we integrated the outcomes of this new 
experiment into a fresh set of hands-on labs, maintaining 
continuity with the existing content. For the first category of 
the hands-on labs, we tasked CodeX with generating 
functions that would perform similar tasks to our code 
snippets, potentially leading to vulnerabilities. The second 

category of these labs employs CodeBERT to predict the 
names of built-in functions through the masking technique. 
Students are then introduced to the security implications of 
the predicted function and provided with alternative 
functions, each varying in terms of vulnerability. This 
approach provides them with a deeper insight into the inner 
workings of C’s built-in functions and how they may 
inadvertently lead to vulnerabilities. 

In the third category, we engaged GPT 3.5 to assess 
whether the generated code produced by CodeX, CodeBert, 
and the previously designed vulnerable code from the initial 
dataset contained any vulnerabilities. Our inquiry extended 
to soliciting GPT 3.5’s recommendations for mitigation 
techniques. We then proceeded to compare these suggestions 
with the outcomes of static code analysis tools utilized in the 
initial labs, which included Clang-Tidy, FlawFinder, and 
VCG. 

A comprehensive inventory of identified vulnerabilities, 
along with potential attack vectors that were tested and 
covered in the labs, includes the following: Format string 
attack (Tainted Data), Invalid String Format, Undefined 
Behavior Due to Unsequenced Modification and Access to 
Variables, Input Validation, Buffer Overflow Without User 
Input, Insufficient Input Sanitization, Memory Allocation 
(Errors & Leaks), SQL injection, Brute Force Attack, Cross-
Site Scripting Attack, HTTP Flood, SYN Flood, Improper 
Restriction of Operations within the Buffer, NULL Pointer 
Deference, Use of Pointer Subtraction to Determine Size, and 
XSS. 

IV. RESULTS & DISCUSSION 
To illustrate how the analysis was carried out and what 

results were obtained, we have chosen two specific 
vulnerabilities - input validation/sensitization and format 
string vulnerability - that arise from the use of the ”scanf” 
built-in function in the C programming language without 
setting any limits on the number of characters that the user 
can enter. This can result in undefined behavior and pose a 
potential security threat if an attacker is able to manipulate 
the input value. The code snippet below is an example of a 
vulnerable code from our initial dataset. 

 
#include <stdio.h> 

#include <stdlib.h> 

int input; 

scanf(”%d”, &input); 

printf(input); 

 
Note that the example code is lacking the following secure 
programming practices: 

1) The printf function expects a format string as its 
first argument, but input is being passed as the 
argument. This can result in undefined behavior. To 
fix this, the code should use a format string to 
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specify the desired output format, like printf(“%d”, 
input). 

2) There is no input validation or error checking on the 
scanf call. This can lead to undefined behavior 
when input is later used. To fix this, the code should 
ensure the return value of scanf is an integer from 
the input. 

3) The input variable is declared as a global variable, 
which can make the code harder to understand and 
maintain. It is better practice to declare variables in 
the smallest scope possible. 

4) There are no bounds checking on the input variable 
which could cause a buffer overflow vulnerability. 

5) The code does not have a return statement, which 
can result in undefined behavior. The main function 
should always return an integer to indicate the exit 
status of the program. 

A. CodeX 
To evaluate the performance of these models, we began 

by tasking CodeX with replicating the exploit by generating 
a C function that takes user input and displays it as an output. 
The code snippet below demonstrates the generated code by 
CodeX. 

 
#include <stdio.h> 

int main( ){ 

char input [100]; 

printf(“Please enter something:”); 

scanf(“%s”, input); 

printf(“You entered: %s\n”, input); 

return0; 

} 

The generated code by CodeX covers most of the 
remediations to address the vulnerabilities and issues present 
in the original code however it is still missing the error 
checking. 

B. CodeBERT 
Next, we conducted training sessions with CodeBERT, 

employing the FORMAI dataset, a substantial repository 
comprising AI-generated C programs and their 
corresponding vulnerability classifications. Initially, the 
model featured 16 attention heads, with a maximum number 
of embeddings capped at 1024. However, the model’s 
performance did not meet our expectations, achieving an 
accuracy rate of only 84%. Furthermore, it failed to provide 
secure built-in function suggestions as replacements for the 
masked functions. Below, we provide an illustration of the 
CodeBERT model’s input and output using the same code 
snippet: 

CodeBERT Input: 

 
#include <stdio.h> 

int main( ){ 

char input [100]; 

printf(“Please enter something:”); 

<mask> (”%s”, input); 

printf(”You entered: %s\n”, input); 

return0; 

} 

 
CodeBERT Output: 
#include <stdio.h> 

int main( ){ 

char input[100]; 

printf(”Please enter something:”); 

=(”%s”, input); 

printf(”You entered: %s\n”, input); 

return0; 

} 

C. GPT 3.5 
In the last category, we assigned GPT the following two 

tasks: First, to generate a code that replicates the functionality 
outlined in the original code snippet. Second, to analyze the 
original vulnerable code, offer security improvement 
recommendations, and implement fixes to transform the 
original code into a secure, non-vulnerable version. The 
generated code by GPT is as follows: 

 
#include <stdio.h> 

int main( ){ 

char userInput[100]; 

fgets(userInput, 100, stdin); 

printf(”You entered: %s”, userInput); 

} 

The code generated by GPT 3.5 successfully addresses 
several vulnerabilities, such as bound checking, input 
validation, global variable, and format string vulnerabilities. 
However, it fails to address the error checking and return 
statement issues. Interestingly, when provided with the 
exploit and asked to suggest security improvements, GPT 
addresses the return statement and error-checking concerns 
but overlooks the input validation, bound checking, global 
variable, and format string vulnerabilities. Moreover, when 
GPT 3.5 is presented with its non-exploit code suggestion, it 
indicates that there are no apparent vulnerabilities in the 
code. The improved original snippet generated by GPT is as 
follows: 
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#include <stdio.h> 

#include <stdlib.h> 

int main( ){ 

int input; 

if(scanf (”%d”, &input) != 1){ 

printf(”Error: invalid input \n”); 

return 1; 

} 

printf(”%d\n”, input); 

return 0; 

} 

Similar to the described method with the vulnerability 
example that was just described, we evaluated the 
performance of the three models on all vulnerability 
categories collected in our prior work that were described in 
Section III. The aforementioned vulnerability categories and 
the overall performance results of the models is presented in 
Fig. 2. 

As [14] mentioned, user interactions with code 
generation AI models can be categorized into acceleration 
and exploration experiences. In acceleration mode, the 
programmer already knows what they want to do next, and 
the code generation model helps them get there quicker. In 
exploration mode, the programmer is not sure how to proceed 
and uses a code generation model to explore their options or 
get a starting point for the solution. Based on our experiment, 

both GPT 3.5 and CodeX are more suitable for developers in 
the acceleration mode as a debugging assistant [15] and the 
use of GPT 3.5 may be potent to security vulnerabilities if 
used by beginner-level developers in the exploration mode. 

V. CONCLUSION & FUTURE WORK 
In conclusion, this study aimed to compare and analyze 

the code generation capabilities and security measures taken 
for code generation in GPT 3.5, CodeBert and CodeX. The 
results showed that CodeX had the highest code generation 
capability, generating code that was accurate, secure, and 
privacy-preserving. GPT 3.5 had relatively lower code 
generation capabilities compared to CodeX, but it excelled in 
explaining potential vulnerabilities, commenting on the code, 
and analyzing log files, enabling students to gain a better 
understanding of HTTP requests. CodeBert also 
demonstrated a high code generation capability but was 
weaker in terms of security measures. It is essential to 
consider the complexity of the task, the clarity of the 
instructions, and the model’s level of understanding of the 
programming language and relevant frameworks to ensure 
the quality and accuracy of the generated code. As suggested 
by [15] code, generating AIs cannot fully substitute for 
professionals whose responsibilities extend beyond mere 
coding. However, it offers a range of possibilities for 
individuals involved in coding by facilitating prompt 
engineering and improving coding skills. The findings of this 
study can provide a basis for future research on improving 
the security measures of AI code-generating models while 
enhancing their code-generation capabilities [16]. 

 
Fig. 2. Overall Performance of the 3 models 



2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024 

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 6 www.cisse.info 

The area for future work could be exploring existing bias 
in these models when generating code [15]. Additionally, 
research can be conducted to analyze the effectiveness of 
various security measures and policies in preventing AI 
model attacks and ensuring the privacy and security of 
generated code in software engineering education [17]. The 
potential of generative AI to transform software engineering 
education by automating routine tasks, accelerating learning, 
personalizing instruction, and enhancing collaboration. It 
recognizes that while AI can play a pivotal role [20], 
educators remain central to nurturing the next generation of 
software engineers while emphasizing ethical considerations 
in integrating AI technologies. Generative AI has the 
potential to revolutionize software security and vulnerability 
management by automating tasks, improving threat 
detection, and enabling faster response to emerging threats. 
However, it also comes with challenges that need to be 
managed as this technology becomes more integrated into 
cybersecurity practices [21]. 
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