
2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 1 www.cisse.info

Assessing the Effectiveness and Security
Implications of AI Code Generators

Maryam Taeb
Electrical & Computer Engineering
FAMU-FSU College of Engineering

Tallahassee, USA
0000-0001-9950-1953

Hongmei Chi
Computer Information & Sciences

Florida A&M University
Tallahassee, USA

0000-0003-4610-6479

Shonda Bernadin
Electrical & Computer Engineering
FAMU-FSU College of Engineering

Tallahassee, USA
0000-0002-5527-2279

Abstract—Students, especially those outside the field of
cybersecurity, are increasingly turning to Large Language
Model (LLM)-based generative AI tools for coding assistance.
These AI code generators provide valuable support to
developers by generating code based on provided input and
instructions. However, the quality and accuracy of the
generated code can vary, depending on factors such as task
complexity, the clarity of instructions, and the model’s
familiarity with the programming language. Additionally,
these generated codes may inadvertently utilize vulnerable
built-in functions, potentially leading to source code
vulnerabilities and exploits. This research undertakes an in-
depth analysis and comparison of code generation, code
completion, and security suggestions offered by prominent AI
models, including OpenAI CodeX, CodeBert, and ChatGPT.
The research aims to evaluate the effectiveness and security
aspects of these tools in terms of their code generation, code
completion capabilities, and their ability to enhance security.
This analysis serves as a valuable resource for developers,
enabling them to proactively avoid introducing security
vulnerabilities in their projects. By doing so, developers can
significantly reduce the need for extensive revisions and
resource allocation, whether in the short or long term.

Keywords—Source Code Vulnerability, Large Language
Model, LLM, NLP, Foundation Models, CodeBert, GPT

I. INTRODUCTION
Natural language processing (NLP) models that can

understand the intent of a query and search through large
datasets of code snippets to find relevant matches have a wide
range of potential applications in both education and
industry.

Code generation models can improve programming
education and provide personalized learning experiences
based on individual needs and learning styles [1]. They can
improve the efficiency and effectiveness of software
development, improve software testing and quality
assurance, source code vulnerability detection, and
accessibility testing [2].

Although these models have been shown to substantially
enhance code-authoring performance without compromising
developers’ ability to perform manual code-modification
tasks [18], there are also drawbacks and concerns associated
with their usage. One potential disadvantage of using them
for code search and discovery is that developers may become

over-reliant on the models. If users rely too heavily on the
models to find solutions to coding problems, they may not
develop the critical thinking skills and problem-solving
abilities needed to become effective programmers.
Furthermore, since the accuracy of these models can vary
depending on the quality of the training data, there is a risk
that developers may be provided with inaccurate or
incomplete information [3]. Secure coding, also known as
secure programming, involves writing robust code to prevent
potential security vulnerabilities. Secure coding is not only
about developing high-quality code. It also requires creating
a secure environment and utilizing a secure platform.
However, neither state-of-the-art technologies nor the
education system emphasize the significance of source code
vulnerability analysis or equips developers with practical
exposure and adequate tools/techniques [4].

This research, by analyzing the privacy implications of
code searching and generating AI models, aims to identify
potential privacy risks and take steps to mitigate them.
Examining the privacy implications of code snippet-
generating AI models is vital to guarantee these technologies’
secure and ethical utilization. It can also assist developers in
gaining a more comprehensive understanding of the potential
hazards associated with their implementation, especially
when deciding how to integrate models into their
development processes.

The rest of this paper is organized as follows. Section II
presents an overview of the related work for AI/NLP code
search and discovery models and their use cases. A detailed
description of the security vulnerability tests in code snippets,
methodology, and performed analysis is provided in Section
III. Preliminary results and discussion of the findings are
presented in Section IV. Finally, Section V provides the
conclusion and future works.

II. RELATED WORK
Semantic code search and code-generating AI models

have been an area of active research in recent years due to
their potential to improve software development productivity
and quality [5]. Code snippet search involves finding code
snippets from a large corpus of code repositories that are
relevant to a specific programming task. Furthermore, code-
generating AI models are designed to automate the process
of code generation by learning from existing code [6]. These
tools can be used to help programmers find code snippets that

https://orcid.org/0000-0001-9950-1953
https://orcid.org/0000-0003-4610-6479
https://orcid.org/0000-0002-5527-2279

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 2 www.cisse.info

can be reused or modified for their specific task and generate
code for various programming tasks, such as bug fixing,
refactoring, and code synthesis, thus reducing development
time and effort. One of the most common approaches for
code snippet search is to use text-based search techniques,
such as keyword matching or regular expressions, to find
code snippets that match a given query [7]. CodeHow, is a
code snippet search model that uses natural language queries
and deep learning techniques to retrieve relevant code
snippets using both semantic similarity and potential APIs on
code search [8]. CodeHow is deployed as the backend of
Microsoft Azure service and is available as a front-end
service extension on Visual Studio. CodeHow achieves a
Mean Reciprocal Rank (MRR) score of 0.86%.

One of the earliest works in code generation AI models is
DeepCoder, proposed by Balog et al. [9]. DeepCoder is a
system that automatically generates code from a high-level
specification provided as an input-output example and has
achieved an accuracy of 28.2%. Code2Vec, proposed by
Alon et al. [10] is a neural network-based model that learns
distributed representations of code snippets and uses them to
generate code by mapping each snippet to a vector
representation, achieving an accuracy of 72%. A team of
researchers from OpenAI proposed GPT-2, a large-scale
language model that can generate natural language text [11].
While not specifically designed for code generation, GPT-2
has been shown to be capable of generating high-quality code
snippets given a natural language prompt and has achieved
an accuracy of 0.83%. IntelliCode Compose was proposed as
a general-purpose multilingual code completion tool that is
capable of predicting sequences of code tokens of arbitrary

types, generating up to entire lines of syntactically correct
code, achieving an edit similarity of 86.7% [12].

Given the increasing importance of vulnerability-free
source code in the software development life cycle and the
growing trend of using AI technology in organizations, this
study explores the potential applications and limitations of
code-generating AI models for educational and academic
purposes. This will be achieved through an in-depth analysis
of the strengths and limitations of these tools and the
improvement of the generated code using prompt
engineering techniques.

III. METHODOLOGY
The approach taken in this work is partially based on our

previous efforts in developing a personalized learning
framework for software vulnerability detection and education
[4]. Following the concept of Secure Software Development
Life Cycle (SSDLC), in this work, we have examined and
used CodeBERT, GPT 3.5, and CodeX to replicate real-life
vulnerability scenarios that were raised from unpatched
source codes that included CVE and NVD vulnerability
examples. We then scanned both the AI replicated code and
the previously designed unpatched source codes for
vulnerabilities on GPT 3.5. This allowed us to understand the
effectiveness and accuracy of the code-generating AIs, thus
helping developers to learn essential skills to use such tools.
Fig. 1 presents a general overview of our approach. The rest
of this section will present an overview of the code
generation models’ behavior and the vulnerabilities tested on
them.

Fig. 1. Overview of the Approach

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 3 www.cisse.info

A. Experimental Setup
Our research is structured into three distinct experimental

categories, each focusing on code analysis and enhancement
aspects. In the first category, we leveraged the capabilities of
CodeBERT, an advanced language model designed primarily
for code retrieval and generation tasks. Within this category,
we provided CodeBERT with code snippets exemplifying
potential vulnerabilities as single-function C files, and we
further enhanced the model’s functionality by developing a
utility function. This utility function was designed to predict
masked functions or variables, enabling CodeBERT to
generate recommendations for more secure built-in functions
capable of mitigating potential vulnerabilities.

In the second category, we harnessed the power of
CodeX, an advanced code generation tool, to create code
snippets. These code snippets were intentionally designed to
implement functionalities that exemplify vulnerabilities and
security risks commonly encountered in software code. By
utilizing CodeX’s specialized capabilities, our objective was
to assess the security of the generated code when
incorporating the specified functionalities. The third category
focused on assessing the security level of the generated code
snippets. To accomplish this, we employed a combination of
static analysis tools and GPT 3.5. While GPT 3.5 is not
inherently designed for code-related tasks, it plays a crucial
role in generating detailed and informative responses to
queries about code. Additionally, GPT 3.5 offered valuable
insights into code functionality and suggested ways to
enhance its security. This multifaceted approach allowed us
to comprehensively evaluate the security aspects of the
generated code, providing a holistic perspective on code
vulnerability and potential mitigation strategies.

Upon completing the experiments, we formulated a set of
practical, hands-on labs to demonstrate the utilization of
code-generating AI tools within the context of secure coding
practices. In the subsequent section, we provide in-depth
information regarding the vulnerabilities discovered and
elaborate on the hands-on lab activities.

B. Tested Vulnerabilities & Hands-on Labs
In our previous work [4], we established a Personalized

Learning Framework for Software Vulnerability Detection,
which included a dataset comprising code snippets
showcasing the most prevalent source code vulnerabilities,
common CVEs, CWEs, NIST vulnerabilities, and OWASP’s
top 10 web application security risks. Utilizing these code
snippets and their corresponding functionalities, we
leveraged code-generating AI tools to introduce
vulnerabilities like format string attacks, invalid string
formats, and instances of undefined behavior due to
unsequenced modification and variable access.

Subsequently, we integrated the outcomes of this new
experiment into a fresh set of hands-on labs, maintaining
continuity with the existing content. For the first category of
the hands-on labs, we tasked CodeX with generating
functions that would perform similar tasks to our code
snippets, potentially leading to vulnerabilities. The second

category of these labs employs CodeBERT to predict the
names of built-in functions through the masking technique.
Students are then introduced to the security implications of
the predicted function and provided with alternative
functions, each varying in terms of vulnerability. This
approach provides them with a deeper insight into the inner
workings of C’s built-in functions and how they may
inadvertently lead to vulnerabilities.

In the third category, we engaged GPT 3.5 to assess
whether the generated code produced by CodeX, CodeBert,
and the previously designed vulnerable code from the initial
dataset contained any vulnerabilities. Our inquiry extended
to soliciting GPT 3.5’s recommendations for mitigation
techniques. We then proceeded to compare these suggestions
with the outcomes of static code analysis tools utilized in the
initial labs, which included Clang-Tidy, FlawFinder, and
VCG.

A comprehensive inventory of identified vulnerabilities,
along with potential attack vectors that were tested and
covered in the labs, includes the following: Format string
attack (Tainted Data), Invalid String Format, Undefined
Behavior Due to Unsequenced Modification and Access to
Variables, Input Validation, Buffer Overflow Without User
Input, Insufficient Input Sanitization, Memory Allocation
(Errors & Leaks), SQL injection, Brute Force Attack, Cross-
Site Scripting Attack, HTTP Flood, SYN Flood, Improper
Restriction of Operations within the Buffer, NULL Pointer
Deference, Use of Pointer Subtraction to Determine Size, and
XSS.

IV. RESULTS & DISCUSSION
To illustrate how the analysis was carried out and what

results were obtained, we have chosen two specific
vulnerabilities - input validation/sensitization and format
string vulnerability - that arise from the use of the ”scanf”
built-in function in the C programming language without
setting any limits on the number of characters that the user
can enter. This can result in undefined behavior and pose a
potential security threat if an attacker is able to manipulate
the input value. The code snippet below is an example of a
vulnerable code from our initial dataset.

#include <stdio.h>

#include <stdlib.h>

int input;

scanf(”%d”, &input);

printf(input);

Note that the example code is lacking the following secure
programming practices:

1) The printf function expects a format string as its
first argument, but input is being passed as the
argument. This can result in undefined behavior. To
fix this, the code should use a format string to

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 4 www.cisse.info

specify the desired output format, like printf(“%d”,
input).

2) There is no input validation or error checking on the
scanf call. This can lead to undefined behavior
when input is later used. To fix this, the code should
ensure the return value of scanf is an integer from
the input.

3) The input variable is declared as a global variable,
which can make the code harder to understand and
maintain. It is better practice to declare variables in
the smallest scope possible.

4) There are no bounds checking on the input variable
which could cause a buffer overflow vulnerability.

5) The code does not have a return statement, which
can result in undefined behavior. The main function
should always return an integer to indicate the exit
status of the program.

A. CodeX
To evaluate the performance of these models, we began

by tasking CodeX with replicating the exploit by generating
a C function that takes user input and displays it as an output.
The code snippet below demonstrates the generated code by
CodeX.

#include <stdio.h>

int main(){

char input [100];

printf(“Please enter something:”);

scanf(“%s”, input);

printf(“You entered: %s\n”, input);

return0;

}

The generated code by CodeX covers most of the
remediations to address the vulnerabilities and issues present
in the original code however it is still missing the error
checking.

B. CodeBERT
Next, we conducted training sessions with CodeBERT,

employing the FORMAI dataset, a substantial repository
comprising AI-generated C programs and their
corresponding vulnerability classifications. Initially, the
model featured 16 attention heads, with a maximum number
of embeddings capped at 1024. However, the model’s
performance did not meet our expectations, achieving an
accuracy rate of only 84%. Furthermore, it failed to provide
secure built-in function suggestions as replacements for the
masked functions. Below, we provide an illustration of the
CodeBERT model’s input and output using the same code
snippet:

CodeBERT Input:

#include <stdio.h>

int main(){

char input [100];

printf(“Please enter something:”);

<mask> (”%s”, input);

printf(”You entered: %s\n”, input);

return0;

}

CodeBERT Output:
#include <stdio.h>

int main(){

char input[100];

printf(”Please enter something:”);

=(”%s”, input);

printf(”You entered: %s\n”, input);

return0;

}

C. GPT 3.5
In the last category, we assigned GPT the following two

tasks: First, to generate a code that replicates the functionality
outlined in the original code snippet. Second, to analyze the
original vulnerable code, offer security improvement
recommendations, and implement fixes to transform the
original code into a secure, non-vulnerable version. The
generated code by GPT is as follows:

#include <stdio.h>

int main(){

char userInput[100];

fgets(userInput, 100, stdin);

printf(”You entered: %s”, userInput);

}

The code generated by GPT 3.5 successfully addresses
several vulnerabilities, such as bound checking, input
validation, global variable, and format string vulnerabilities.
However, it fails to address the error checking and return
statement issues. Interestingly, when provided with the
exploit and asked to suggest security improvements, GPT
addresses the return statement and error-checking concerns
but overlooks the input validation, bound checking, global
variable, and format string vulnerabilities. Moreover, when
GPT 3.5 is presented with its non-exploit code suggestion, it
indicates that there are no apparent vulnerabilities in the
code. The improved original snippet generated by GPT is as
follows:

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 5 www.cisse.info

#include <stdio.h>

#include <stdlib.h>

int main(){

int input;

if(scanf (”%d”, &input) != 1){

printf(”Error: invalid input \n”);

return 1;

}

printf(”%d\n”, input);

return 0;

}

Similar to the described method with the vulnerability
example that was just described, we evaluated the
performance of the three models on all vulnerability
categories collected in our prior work that were described in
Section III. The aforementioned vulnerability categories and
the overall performance results of the models is presented in
Fig. 2.

As [14] mentioned, user interactions with code
generation AI models can be categorized into acceleration
and exploration experiences. In acceleration mode, the
programmer already knows what they want to do next, and
the code generation model helps them get there quicker. In
exploration mode, the programmer is not sure how to proceed
and uses a code generation model to explore their options or
get a starting point for the solution. Based on our experiment,

both GPT 3.5 and CodeX are more suitable for developers in
the acceleration mode as a debugging assistant [15] and the
use of GPT 3.5 may be potent to security vulnerabilities if
used by beginner-level developers in the exploration mode.

V. CONCLUSION & FUTURE WORK
In conclusion, this study aimed to compare and analyze

the code generation capabilities and security measures taken
for code generation in GPT 3.5, CodeBert and CodeX. The
results showed that CodeX had the highest code generation
capability, generating code that was accurate, secure, and
privacy-preserving. GPT 3.5 had relatively lower code
generation capabilities compared to CodeX, but it excelled in
explaining potential vulnerabilities, commenting on the code,
and analyzing log files, enabling students to gain a better
understanding of HTTP requests. CodeBert also
demonstrated a high code generation capability but was
weaker in terms of security measures. It is essential to
consider the complexity of the task, the clarity of the
instructions, and the model’s level of understanding of the
programming language and relevant frameworks to ensure
the quality and accuracy of the generated code. As suggested
by [15] code, generating AIs cannot fully substitute for
professionals whose responsibilities extend beyond mere
coding. However, it offers a range of possibilities for
individuals involved in coding by facilitating prompt
engineering and improving coding skills. The findings of this
study can provide a basis for future research on improving
the security measures of AI code-generating models while
enhancing their code-generation capabilities [16].

Fig. 2. Overall Performance of the 3 models

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 6 www.cisse.info

The area for future work could be exploring existing bias
in these models when generating code [15]. Additionally,
research can be conducted to analyze the effectiveness of
various security measures and policies in preventing AI
model attacks and ensuring the privacy and security of
generated code in software engineering education [17]. The
potential of generative AI to transform software engineering
education by automating routine tasks, accelerating learning,
personalizing instruction, and enhancing collaboration. It
recognizes that while AI can play a pivotal role [20],
educators remain central to nurturing the next generation of
software engineers while emphasizing ethical considerations
in integrating AI technologies. Generative AI has the
potential to revolutionize software security and vulnerability
management by automating tasks, improving threat
detection, and enabling faster response to emerging threats.
However, it also comes with challenges that need to be
managed as this technology becomes more integrated into
cybersecurity practices [21].

REFERENCES
[1] Parashar, Binayak, et al. ”Revolutionary transformations in twentieth

century: making AI-assisted software development.” Computational
Intelligence in Software Modeling 13.1 (2022).

[2] Rietz, Tim, and Alexander Maedche. ”Cody: An AI-based system to
semi-automate coding for qualitative research.” Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems.
2021.

[3] Perry, Neil, et al. ”Do Users Write More Insecure Code with AI
Assistants?.” arXiv preprint arXiv:2211.03622 (2022).

[4] Taeb, Maryam, and Hongmei Chi. ”A personalized learning
framework for software vulnerability detection and education.” 2021
International Symposium on Computer Science and Intelligent
Controls (ISCSIC). IEEE, 2021.

[5] Husain, H., Wu, H. H., Gazit, T., Allamanis, M., & Brockschmidt,
M. Codesearchnet challenge: Evaluating the state of semantic code
search. (2019)

[6] Yan, S., Yu, H., Chen, Y., Shen, B., & Jiang, L. (2020, February).
Are the code snippets what we are searching for? a benchmark and
an empirical study on code search with natural-language queries. In
2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER) pp. 344–354

[7] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish
Chandra. 2019. Aroma: code recommendation via structural code
search. Proc. ACM Program. Lang. 3, OOPSLA, Article 152
(October 2019), 28 pages.

[8] Lv, F., Zhang, H., Lou, J. G., Wang, S., Zhang, D., & Zhao, J.
(2015, November). Codehow: Effective code search based on api
understanding and extended boolean model (e). In 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE) pp. 260–270

[9] Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow,
D. (2016). Deepcoder: Learning to write programs.

[10] Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). code2vec:
Learning distributed representations of code. Proceedings of the
ACM on Programming Languages, 3(POPL), 1-29

[11] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI blog, 1(8), 9

[12] Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N. (2020,
November). Intellicode compose: Code generation using
transformer. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 1433-1443)

[13] Hanif, Hazim, and Sergio Maffeis. ”Vulberta: Simplified source
code pre-training for vulnerability detection.” 2022 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2022.

[14] Barke, Shraddha, Michael B. James, and Nadia Polikarpova.
”Grounded copilot: How programmers interact with code-generating
models.” arXiv preprint arXiv:2206.15000 (2022).

[15] Borji, Ali. ”A categorical archive of ChatGPT failures.” arXiv
preprint arXiv:2302.03494 (2023).

[16] Kasneci, Enkelejda, et al. ”ChatGPT for good? On opportunities and
challenges of large language models for education.” Learning and
Individual Differences 103 (2023): 102274.

[17] Zhuo, Terry Yue, et al. ”Exploring AI ethics of ChatGPT: A
diagnostic analysis.” arXiv preprint arXiv:2301.12867 (2023).

[18] Kazemitabaar, Majeed, et al. ”Studying the effect of AI Code
Generators on Supporting Novice Learners in Introductory
Programming.” Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. 2023.

[19] Daun, Marian and Brings, Jennifer. ”How ChatGPT Will Change
Software Engineering Education”, proceedings of the 2023
Conference on Innovation and Technology in Computer Science
Education V. 1,110– 116, 2023

[20] Happe, Andreas, and Ju¨rgen Cito. ”Getting pwn’d by AI:
Penetration Testing with Large Language Models.” arXiv preprint
arXiv:2308.00121 (2023).

	Assessing the Effectiveness and Security Implications of AI Code Generators
	I. Introduction
	II. Related Work
	III. Methodology
	A. Experimental Setup
	B. Tested Vulnerabilities & Hands-on Labs

	IV. Results & Discussion
	A. CodeX
	B. CodeBERT
	C. GPT 3.5

	V. Conclusion & Future Work
	References

