
2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 1 www.cisse.info

Assessing Common Software Vulnerabilities in
Undergraduate Computer Science Assignments

Andrew Sanders
Computer and Cyber Science

Augusta University
Augusta, USA

asanders4@augusta.edu
0009-0004-7158-0097

Gursimran Singh Walia
Computer and Cyber Science

Augusta University
Augusta, USA

gwalia@augusta.edu
0000-0002-4029-6227

Andrew Allen
Computer Science

Georgia Southern University
Statesboro, USA

aallen@georgiasouthern.edu
0000-0003-0244-3123

Abstract—As the demand for secure coding education
grows, there is a need for improvements in how secure coding
is taught and in preparing students to develop more secure
software. As time in a Computer Science classroom is finite,
educational efforts should be placed on targeting the most
common types of vulnerabilities to better prepare students to
avoid common security pitfalls in coding.

Existing research in this area mainly focuses on developing
vulnerability detection tools rather than analyzing the types of
commonly produced vulnerabilities by students. Limited
research exists in determining common student-produced
vulnerabilities, and the available studies differ from the types
of vulnerabilities that are researched in vulnerability detection
literature.

Our research works to further establish the types of
vulnerabilities produced by students by using a static analysis
tool on assignment code submissions in an undergraduate
Programming II (CS2) course.

We present our findings on what types of vulnerabilities are
commonly produced by students and contrast them with what
is commonly researched in the literature. We find there is little
overlap between the vulnerability types reported by our study
and other studies in the research area. This research has
potential implications for secure coding education in a
Computer Science curriculum. Further work should be done to
establish the contexts in which specific vulnerability types are
more likely to be produced and how to best teach students to
avoid producing these vulnerabilities.

Keywords—Secure Coding Education, Cyber-Security
Education, Vulnerability Analysis

I. INTRODUCTION
While the Computing curriculum has focused on

preparing the workforce to develop functional software, the
need for secure coding education is growing. The United
States Department of Homeland Security has previously
stated that 90% of reported security incidents result from
exploits against defects in the design or code of software [6].
More recently, Verizon’s 2023 Data Breach Investigation
Report stated that software code vulnerability exploitation is
one of the primary methods by which attackers access an
organization [5]. Recommended Computer Science
guidelines, such as those proposed by ACM’s Curriculum

Guidelines and the recent ABET standards [1], have evolved
to include principles of secure computing (sometimes called
secure coding) in the general curriculum requirements. The
increased importance of integrating security principles in the
CS/Cybersecurity curriculum has led to the development of
the Information Assurance and Security knowledge area by
the ACM and IEEE Joint Task Force on Computing
Curricula [11]. The development of these guidelines has
implications for the technical workforce (professionals in
industry), which relies on academic institutions to produce
graduates that are versed with secure coding education [7].

Traditionally, academic computer science programs have
either lacked a software security course requirement [10] or
included a stand-alone senior-level area of emphasis course.
In a survey of developers and IT professionals conducted by
Veracode, most developers felt their university-provided
software security skills were inadequate for their industry
jobs requirements [10]. The current lack of focus on the
integration of secure coding education in computer science
programs points to a need for improvements in how secure
coding is taught and in preparing students to develop more
secure software. To train students on understanding and
avoiding introducing vulnerabilities during code
development, the first step is to collect data on the type of
vulnerabilities that students (or developers) introduce at
different levels of their program completion.

It is essential to establish commonly used terms,
taxonomy, and repositories to aid readers’ understanding of
the technical terms used in this research. For this work, we
are following the Common Weakness Enumerated (CWE)
framework [4]. The CWE framework establishes the terms
that follow.

• A weakness is a condition that, under certain
circumstances, could contribute to the introduction
of vulnerabilities.

• A vulnerability is a weakness in an information
system, system security procedures, internal
controls, or implementation that could be exploited
or triggered by a threat source.

The Common Vulnerabilities and Exposures (CVE)
program identifies, defines, and catalogs publicly disclosed
cybersecurity vulnerabilities [13]. They maintain a list of

mailto:asanders4@augusta.edu
https://orcid.org/0009-0004-7158-0097
mailto:gwalia@augusta.edu
https://orcid.org/0000-0002-4029-6227
mailto:aallen@georgiasouthern.edu
https://orcid.org/0000-0003-0244-3123

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 2 www.cisse.info

CVE records, which is descriptive data about a vulnerability
associated with a CVE ID. The National Institute of
Standards and Technology (NIST) maintains the Software
Assurance Reference Dataset (SARD) and the National
Vulnerability Database (NVD). SARD is a collection of test
programs with documented weaknesses with test cases that
vary from small synthetic programs to large applications
[12]. The NVD is a repository of standards-based
vulnerability management data and is tasked with analyzing
each CVE published to the CVE list and associating
reference tags, Common Vulnerability Scoring System
(CVSS), Common Weakness Enumeration (CWE), and
Common Platform Enumeration (CPE) applicability
statements [13]. Common Weakness Enumeration (CWE) is
a list of weakness types for software and hardware.
Vulnerabilities within this list are arranged in a tree-like
hierarchy, based on the level of abstraction. The top level is
Category, which contains entries that share common
characteristics and represent commonly understood areas
within software development. When referring to a weakness,
it is common to refer to it using its CWE-ID.

While previous research efforts in the area have mainly
focused on developing vulnerability detection tools and
methods [8], there seems to be a lack of focus on analyzing
types of vulnerabilities produced by students and
professional developers. As of 2022, there seems only to exist
one paper [15] that talks about code vulnerabilities
introduced by students. However, the most common
vulnerabilities reported in the paper differ from those
commonly researched by vulnerability analysis papers. The
most common types of vulnerabilities studied by software
vulnerability researchers are as follows [8]:

• (CWE-78) OS command injection

• (CWE-79) Cross-site scripting

• (CWE-89) SQL injection

• (CWE-119) Buffer errors

• (CWE-120) Buffer overflow

• (CWE-190) Integer overflow

• (CWE-306) Missing authentication for critical
function

Each of these seven vulnerabilities is contained in the
2022 CWE Top 25 Most Dangerous Software Weaknesses
[3], which is based on data from the National Vulnerability
Database and officially submitted CVEs. These
vulnerabilities contrast with what was reported by [15] in
Table I to be the most common vulnerabilities introduced by
students. None of the CWE-IDs reported by [15] are
represented in the most commonly studied vulnerabilities in
the literature, though CWE-89 and CWE-564 are both SQL
Injection-related. This mismatch can lead to oversights in
Computer Science education in which more uncommon
vulnerabilities get more of the educational focus, causing
students to be less prepared to make secure software.

This research focuses on using existing static analysis
tools and their output to further establish the most common
types of vulnerabilities produced by students so that teaching
methods and tools can be developed to help students and
professional developers develop more secure software. To
that end, our research questions are as follows.

1) RQ1: What are the most common software
vulnerabilities produced by CS2 students in their
assignment submission code?

2) RQ2: How do these software vulnerabilities
compare and contrast with the types of commonly
researched vulnerabilities?

The format of this document is as follows. Section II
explores the related work in the research area. Section III
states the methodology used to answer the research
questions. Section IV presents the results. Section V
discusses the findings.

II. RELATED WORK
Yilmaz et al. used a source code vulnerability analysis

tool to study vulnerabilities introduced by students in a third-
year Database Management Systems course [15]. The
authors created a private dataset using the source code for
two tasks over six semesters of programming assignments.
The students used PHP, HTML, and JavaScript for the
assignments. The authors stated that for future work, research
on student code vulnerability would benefit from datasets
where students develop more complex applications that
resemble real-world scenarios. Table I shows the most
common types of vulnerabilities. Fig. 1 plots the grades
awarded to each student along with the number of
vulnerabilities. The authors state that “better grades indicate
more functionality and complexity thus more probability to
create security vulnerabilities”. They conclude that practical
knowledge of various programming aspects such as logging,
authorization, exception handling, encryption, and
communication protocols are needed to create an effective
learning environment. They also find that there are
correlations between structure of code and vulnerabilities.
Our work builds upon this work by validating its findings and
comparing and contrasting them with commonly researched
vulnerabilities.

TABLE I. VULNERABILITIES OF STUDENT
CODE PER CWE TYPE [15]

Type Definition #

259 Use of Hard-coded Password 829

20 Improper Input Validation 761

564 SQL Injection: Hibernate 751

943 Improper Neutralization of Special Elements in Data
Query Logic

751

489 Active Debug Code 714

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 3 www.cisse.info

Type Definition #

315 Cleartext Storage of Sensitive Information in a Cookie 23

117 Improper Output Neutralization for Logs 17

532 Insertion of Sensitive Information into Log File 17

778 Insufficient Logging 17

521 Weak Password Requirements 15

311 Missing Encryption of Sensitive Data 14

614 Sensitive Cookie in HTTPS Session Without “Secure”
Attribute

14

Fig. 1. Vulnerabilities of Student Code and Grades Received [15]

Hanif et al. studied software vulnerability detection
methods and created a taxonomy of research interests [8].
The research interests they taxonomize are methods,
detection, feature, code, and dataset. They reported a
considerable interest in addressing methods and detection
problems and showed a considerable interest in using
machine learning to detect vulnerabilities. Relevant to this
write-up is that the authors found that most existing works
targeted specific types of vulnerabilities for detection. These
specific types are common because they are frequently
targeted by vulnerability detection systems (not necessarily
because they are commonly introduced in code). Another
finding by the authors is that there is a lack of a large, gold-
standard dataset for software vulnerability detection and that
the currently available real-world vulnerability dataset is the
National Vulnerability Database (NVD). They also note that
the NVD dataset involves the manual extraction of source
code from repositories, which could have potential
mislabeling. Of the 83 cited papers, the dataset breakdown is
as follows:

• National Vulnerability Database (NVD): 20 Papers

• Software Assurance Reference Dataset (SARD): 18
Papers

• Open Source Software (OSS): 49 Papers

• Common Vulnerabilities and Exposures (CVEs): 2
Papers

• Code from Competition: 3 Papers

• Private dataset: 12 Papers

If you roll up the datasets of the cited papers, data can be
classified as coming from one of three places: National
Institute of Science and Technology (NIST), Open Source
Software (OSS), and private datasets.

Hu et al. studied vulnerabilities in Java programming
text-books for an undergraduate Java programming course
[9]. The authors used an open-source vulnerability analysis
tool called FindBugs to analyze the byte code of the sample
source codes in four Java textbooks. They find many
common bugs in the sample source codes, which raise
security concerns. Fig. 2 shows the bugs reported by their
analysis tool grouped by the authors’ vulnerability criteria for
the four Java textbooks. If students were to adopt the coding
styles of these bugged code samples, they might introduce
the same bugs in larger software.

Fig. 2. Types of Bugs Reported by FindBugs in Four Java Textbooks

Categorized by the Authors’ Vulnerability Criteria [9]

In reviewing software vulnerability detection papers,
Hanif et al. [8] broadly divide the approaches into two
categories: Conventional approaches and Machine Learning
based approaches. Machine learning approaches are the more
popular of the two and have more consistent growth in
published papers within the last decade. The machine
learning papers are further broken down into deep learning,
supervised learning, ensemble learning, natural language
processing, semi-supervised learning, regression, and tree-
based. The conventional papers are broken down into static
analysis, hybrid analysis, pattern matching and searching,
graph-based, taint analysis, dynamic analysis, formal models,
and statistical analysis. Conventional approaches often have
low detection performance and high number of false
positives and are generally becoming less reliable as
vulnerabilities keep evolving [8]. However, they can still be
used for conventional vulnerability detection when tools
using other methods are unavailable.

While much work has been put into vulnerability
detection and secure coding, there has been a lack of focus
on analyzing the types of vulnerabilities produced by
Computer Science students and graduates. This lack of

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 4 www.cisse.info

analyses also pairs with a lack of directed pedagogy toward
curbing the kinds of software vulnerabilities produced during
the education process.

III. METHODOLOGY
This section provides our methodology for applying

vulnerability detection tools to answer the research questions
in Section I.

To answer RQ1, we applied a vulnerability detection tool
to each file in the dataset. We generated our dataset by
analyzing the Github assignment submissions for a Georgia
Southern University Programming Principles II course over
the 2017-2023 school years. The total number of assignment
submissions, excluding empty projects, was 3537. The data
consisted of object-oriented assignments in the Java
programming language. Each assignment submission was
compiled before analysis. Each submission was grouped by
year and semester so a later analysis of vulnerabilities
produced over time could be performed. For each file in our
dataset, our vulnerability detection tool reported all potential
vulnerabilities grouped by CWE-ID. The resulting CWE-ID
classifications are grouped per student and per semester to
discover the most common software vulnerabilities produced
in assignment code. In Section IV, we present the results and
analysis from the vulnerability tool.

We used Sonarqube Community Edition Version
10.2.0.77647 to analyze student assignment submission code
for vulnerabilities and weaknesses. It is a self-managed static
analysis tool for continuous codebase inspection [2]. The
SonarQube quality model has four different types of rules:
reliability (bug), maintainability (code smell), and security
(vulnerability and hotspot) rules [14]. A security hotspot
highlights a security-sensitive piece of code that the
developer needs to review. A vulnerability is a problem that
impacts the application’s security and needs to be fixed
immediately. A bug is a coding mistake that can lead to an
error or unexpected behavior at runtime. A code smell is a
maintainability issue that makes your code confusing and
difficult to maintain. For this research, we are only
considering issues that have a direct CWE-ID mapping,
which is indicated by an issue having “cwe” as tag. The
related CWE-IDs are extracted from the issue description.
Fig. 3 shows an example of an assignment analysis by
SonarQube. The figure shows both a bug and a code smell on
separate lines. Each issue has a “cwe” tag, indicating that the
issue has a CWE-ID mapping. Fig. 4 shows a description of
the bug issue. The issue is “Use try-with-resources or close
this ‘BufferedReader’ in a ‘finally’ clause”. This issue has a
CWE-ID mapping of both CWE-459, “Incomplete Cleanup”
and CWE-772, “Missing Release of Resource after Effective
Lifetime”. For our analysis, we include both of these CWE-
IDs for this assignment, in addition to the other CWE-IDs
mapped to the other issues.

Fig. 3. SonarQube Analysis Example

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 5 www.cisse.info

Fig. 4. SonarQube Issue Information Example

To answer RQ2, we used the findings from RQ1 and
compared the results with the commonly researched
vulnerabilities, as established by [8] and reported by [15].
Using CWE-IDs, we compared those present in both papers,
specifically CWE-IDs 78, 89, 119, 120, 190, and 306 in the
case of [8] and CWE-IDs 259, 20, 564, 943, 480, 315, 117,
532, 778, 521, 311, and 614 in the case of [15]. These
comparisons are then used to determine the amount of
overlap in the literature.

IV. RESULTS
The results of using SonarQube on the student

assignment submission dataset are presented in subsection
IV-A. The comparisons with commonly researched
vulnerabilities are presented in subsection IV-B.

A. RQ1
The statistical measures of the CWE-IDs introduced in

the assignments are as follows.

• Mean: 4.37

• Median: 2.0

• Mode: 0

• Min: 0

• Max: 76

• Range: 76

• Standard Deviation: 6.55

• Variance: 42.92

• Skewness: 2.83

The number and skewness of CWE-IDs introduced per
assignment is graphically presented in Fig. 5. The assignment
index is an increasing value so the distribution is clearer to
the reader. Of the 3537 assignments, 1442 assignment
submissions did not have a mapped CWE-ID. This can
potentially be attributed to a variety of factors, such as
simplistic assignment submissions in which hardly any code
was contributed or blind spots in the analysis software in
which further analysis would need to be performed.

Fig. 5. Number of CWE-IDs Introduced per Assignment

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 6 www.cisse.info

With a skewness of 2.8, the data is heavily right-skewed,
meaning only a small portion of assignment submissions
have a large number of mapped CWE-IDs. Of the 3537
assignment submissions, only 134 assignments had 20 or
more CWE-IDs mapped to them and only 558 assignments
had 10 or more CWE-IDs mapped to them.

With respect to answering RQ1, What are the most
common software vulnerabilities produced by CS2 students
in their assignment submission code?, Table II presents the
overall frequency distribution of CWE-IDs over all
assignment submissions. The most frequent CWE-IDs
include (CWE-546) Suspicious Comment, (CWE-581)
Object Model Violation: Just One of Equals and Hashcode
Defined, (CWE-476) NULL Pointer Dereference, (CWE-
563) Assignment to Variable without Use, (CWE-489)
Active Debug Code, (CWE-215) Insertion of Sensitive
Information Into Debugging Code, and (CWE-459)

Incomplete Cleanup. CWE-546 generally comes from auto-
generated TODO comments that are inserted from the IDE.
CWE-581 comes from assignments requiring equals() to be
overwritten but not hashcode(). CWE-476 comes from the
lack of NULL checking on objects before using them. CWE-
563 comes from forgetting to delete variables that are not in
use. CWE-489 comes from print statements that are designed
to help the programmer but should have been removed before
submission. CWE-215 generally comes from catching an
exception and printing out the stack trace to the console.
CWE-459 comes from try-catch blocks lacking a finally to
clean up resources such as a BufferedWriter.

While some of these are of little pedagogical concern to
instructors, such as CWE-546 where unremoved TODO
comments are left in the code, other weaknesses, such as
CWE-476, may be of concern due to the importance of
object-oriented design in the Java programming language.

TABLE II. FREQUENCY DISTRIBUTION OF CWE-IDS

CWE-ID Description Frequency

546 Suspicious Comment 1502

581 Object Model Violation: Just One of Equals and Hashcode Defined 1222

476 NULL Pointer Dereference 1089

563 Assignment to Variable without Use 1049

489 Active Debug Code 870

215 Insertion of Sensitive Information Into Debugging Code 870

459 Incomplete Cleanup 833

772 Missing Release of Resource after Effective Lifetime 833

1241 Use of Predictable Algorithm in Random Number Generator 681

326 Inadequate Encryption Strength 681

330 Use of Insufficiently Random Values 681

338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) 681

595 Comparison of Object References Instead of Object Contents 606

597 Use of Wrong Operator in String Comparison 606

478 Missing Default Case in Multiple Condition Expression 588

190 Integer Overflow or Wraparound 538

493 Critical Public Variable Without Final Modifier 517

500 Public Static Field Not Marked Final 269

397 Declaration of Throws for Generic Exception 176

570 Expression is Always False 153

571 Expression is Always True 153

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 7 www.cisse.info

CWE-ID Description Frequency

369 Divide By Zero 125

607 Public Static Final Field References Mutable Object 110

582 Array Declared Public, Final, and Static 110

483 Incorrect Block Delimitation 95

1333 Inefficient Regular Expression Complexity 80

400 Uncontrolled Resource Consumption 80

481 Assigning instead of Comparing 77

798 Use of Hard-coded Credentials 44

259 Use of Hard-coded Password 41

484 Omitted Break Statement in Switch 32

477 Use of Obsolete Function 14

594 J2EE Framework: Saving Unserializable Objects to Disk 11

486 Comparison of Classes by Name 7

584 Return Inside Finally Block 7

754 Improper Check for Unusual or Exceptional Conditions 6

391 Unchecked Error Condition 5

377 Insecure Temporary File 1

379 Creation of Temporary File in Directory with Insecure Permissions 1

B. RQ2
The commonly researched vulnerabilities, as established

by [8], are presented in Section I. Of the CWE-IDs listed (78,
89, 119, 120, 190, 306), only (CWE-190) Integer Overflow
or Wraparound was found to be represented in student
assignment submissions. This CWE-ID only had 538
occurrences in the 3537 assignment submissions. Of the
reported weaknesses in [15] (CWE-IDs 259, 20, 564, 943,
480, 315, 117, 532, 778, 521, 311, and 614), only (CWE-259)
Use of Hard-coded Password shares a commonality. This
CWE-ID only had 41 occurrences in the 3537 assignment
submissions. The fact that only these CWE-IDs were found
could potentially be attributed to the course level,
programming language used, and assignment requirements.

As the assignment submissions were sourced from a
Programming II (CS2) course in which Java is used, the
requirements and technologies limited the potential for
weaknesses to be introduced. In [15], the assignment
submissions came from a Database Management Systems
Course. The requirements from their assignment involved the
internet and database connections, both of which are lacking

from the Programming II assignments. Certain weaknesses
presented in their study or are commonly researched in the
literature are not possible to be introduced in the
Programming II assignments, such as SQL Injection and
Cross-site scripting. Similarly, the Java programming
language, which all students used in their Programming II
course, severely limits the possibility of introducing (CWE-
120) Buffer overflows due to the bounds-checking of the
language. If this same analysis was performed on a
Programming II course in which C was the language in use,
the results might differ. The key takeaway, when compared
to [15], seems to be that the scope and the amount of external
data communication of an assignment affect the potential for
introducing vulnerabilities.

With respect to answering RQ2, How do these software
vulnerabilities compare and contrast with the types of
commonly researched vulnerabilities?, we find the types of
software vulnerabilities produced by students have little
overlap with both the types of commonly researched
vulnerabilities in literature and the types of vulnerabilities
reported by [15]. This indicates there is little consensus on
what vulnerabilities students produce in their code.

2024 Journal of The Colloquium for Information Systems Security Education, Volume 11, No. 1, Winter 2024

979-8-8797-4077-6/24/$36.00 ©2024 CISSE 8 www.cisse.info

V. DISCUSSION AND CONCLUSION
This paper has studied the use of a static analysis tool on

student assignment code in a Programming II course to
determine the types of software weaknesses produced by
students and how these weaknesses relate to the commonly
studied vulnerabilities in prior work. We found that the most
common types of weaknesses produced by students are
(CWE-546) Suspicious Comment, (CWE-581) Object Model
Violation: Just One of Equals and Hashcode Defined, (CWE-
476) NULL Pointer Dereference, (CWE-563) Assignment to
Variable without Use, and (CWE-489) Active Debug Code.
The table of all types of weaknesses produced by students in
our dataset is shown in Table II. We also found that the types
of vulnerabilities produced by students in our dataset have
little consensus with the types that are commonly researched
and the types reported in previous work in analyzing student
code vulnerabilities. This indicates that further work needs to
be done to establish the context in which vulnerabilities are
produced, such as programming level, programming
language, developer experience, and software requirements.

The findings in this paper could potentially be used to
inform the Computer Science curriculum design in terms of
software security and secure coding. With the knowledge that
certain software weaknesses are more represented in student
assignment submissions than others, more effort could be
placed on teaching to avoid these common pitfalls in
software design. This research area can be expanded by
integrating the most common types of software weaknesses
into existing pedagogy and studying the resulting effects on
the types of weaknesses produced by students in their
assignment code.

REFERENCES
[1] Accreditation Changes — ABET. URL:

https://www.abet.org/accreditation/accreditation-
criteria/accreditation-changes/ (visited on 02/02/2023).

[2] Code Quality Tool & Secure Analysis with SonarQube. URL:
https://www.sonarsource.com/products/sonarqube/ (visited on
06/19/2023).

[3] CWE - Common Weakness Enumeration. URL:
https://cwe.mitre.org/index.html (visited on 02/22/2023).

[4] CWE - Frequently Asked Questions (FAQ). URL:
https://cwe.mitre.org/about/faq.html (visited on 03/08/2023).

[5] DBIR Report 2023 - Master’s Guide. Verizon Business. URL:
https://www.verizon.com/business/resources/reports/dbir/2023/mast
er-guide/ (visited on 07/06/2023).

[6] Department of Homeland Security, US-CERT. Software Assurance.
URL:
https://www.cisa.gov/sites/default/files/publications/infosheet_Softw
areAssurance.pdf (visited on 07/11/2023).

[7] Tiago Gasiba et al. Is Secure Coding Education in the Industry
Needed? An Investigation Through a Large Scale Survey. May 1,
2021, p. 252. 241 pp. DOI: 10.1109/ICSE-SEET52601.2021.00034.

[8] Hazim Hanif et al. “The Rise of Software Vulnerability: Taxonomy
of Software Vulnerabilities Detection and Machine Learning
Approaches”. In: Journal of Network and Computer Applications
179 (Apr. 1, 2021), p. 103009. ISSN: 1084-8045. DOI:
10.1016/j.jnca.2021.103009. URL:
https://www.sciencedirect.com/science/article/pii/S10848045210003
69 (visited on 01/11/2023).

[9] Yen-Hung Hu and Thomas Kofi Annan. “Assessing Java Coding
Vulnerabilities in Undergraduate Software Engineering Education
by Using Open Source Vulnerability Analysis Tools”. In: Journal of
The Colloquium for Information Systems Security Education 4.2 (2
Feb. 19, 2017), pp. 33–33. ISSN: 2641-4554. URL:
https://cisse.info/journal/index.php/cisse/article/view/60 (visited on
02/01/2023).

[10] John Zorabedian. Veracode Survey Research Identifies
Cybersecurity Skills Gap Causes and Cures. Veracode. URL:
https://www.veracode.com/blog/security-news/veracode-survey-
research-identifies-cybersecurity-skills-gap-causes-and-cures
(visited on 07/12/2023).

[11] Association for Computing Machinery (ACM) and IEEE Computer
Society Joint Task Force on Computing Curricula. Computer
Science Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. New York, NY, USA:
Association for Computing Machinery, 2013. 518 pp. ISBN: 978-1-
4503-2309-3.

[12] NIST Software Assurance Reference Dataset. NIST Software
Assurance Reference Dataset. URL: https://samate.nist.gov/SARD
(visited on 02/22/2023).

[13] NVD - Home. URL: https://nvd.nist.gov/ (visited on 02/22/2023).
[14] SonarSource. Issues. URL:

https://docs.sonarsource.com/sonarqube/latest/user-guide/issues/
(visited on 07/12/2023).

[15] Tolga Yilmaz and Özgür Ulusoy. “Understanding Security
Vulnerabilities in Student Code: A Case Study in a Non-Security
Course”. In: Journal of Systems and Software 185 (Mar. 1, 2022), p.
111150. ISSN: 0164-1212. DOI: 10.1016/j.jss.2021.111150. URL:
https://www.sciencedirect.com/science/article/pii/S01641212210024
30 (visited on 09/18/2022).

https://www.abet.org/accreditation/accreditation-criteria/accreditation-changes/
https://www.abet.org/accreditation/accreditation-criteria/accreditation-changes/
https://www.sonarsource.com/products/sonarqube/
https://cwe.mitre.org/index.html
https://cwe.mitre.org/about/faq.html
https://www.verizon.com/business/resources/reports/dbir/2023/master-guide/
https://www.verizon.com/business/resources/reports/dbir/2023/master-guide/
https://www.cisa.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://www.cisa.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://www.doi.org/10.1109/ICSE-SEET52601.2021.00034
https://www.doi.org/10.1016/j.jnca.2021.103009
https://www.sciencedirect.com/science/article/pii/S1084804521000369
https://www.sciencedirect.com/science/article/pii/S1084804521000369
https://cisse.info/journal/index.php/cisse/article/view/60
https://www.veracode.com/blog/security-news/veracode-survey-research-identifies-cybersecurity-skills-gap-causes-and-cures
https://www.veracode.com/blog/security-news/veracode-survey-research-identifies-cybersecurity-skills-gap-causes-and-cures
https://samate.nist.gov/SARD
https://nvd.nist.gov/
https://docs.sonarsource.com/sonarqube/latest/user-guide/issues/
https://www.doi.org/10.1016/j.jss.2021.111150
https://www.sciencedirect.com/science/article/pii/S0164121221002430
https://www.sciencedirect.com/science/article/pii/S0164121221002430

	Assessing Common Software Vulnerabilities in Undergraduate Computer Science Assignments
	I. Introduction
	II. Related Work
	III. Methodology
	IV. Results
	A. RQ1
	B. RQ2

	V. Discussion and Conclusion
	References

