
2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 1 www.cisse.info

Interactive Program Visualization to Teach Stack
Smashing: An Experience Report

Harini Ramaprasad
Computer Science

Univ. of North Carolina at Charlotte
Charlotte, NC, USA
hramapra@uncc.edu

0000-0002-1598-4677

Meera Sridhar
Software and Information Systems Univ. of

North Carolina at Charlotte
Charlotte, NC, USA
msridhar@uncc.edu

0000-0002-7508-5024

Erik Akeyson
Software and Information Systems Univ. of

North Carolina at Charlotte
Charlotte, NC, USA
eakeyson@uncc.edu

Abstract—This paper presents an experience report on
using an interactive program visualization tool — Dynamic,
Interactive Stack-Smashing Attack Visualization (DISSAV) —
and a complementary active-learning exercise to teach stack
smashing, a key software security attack. The visualization tool
and active-learning exercise work synergistically to guide the
student through challenging, abstract concepts in the advanced
cybersecurity area. DISSAV and the exercise are deployed
within the software security module of an undergraduate
cybersecurity course that introduces a broad range of security
topics.

A study is designed that collects and evaluates student
perceptions on the user interface of DISSAV and the
effectiveness of the two resources in improving student
learning and engagement. The study finds that over 80% of
responses to user interface questions, 66% of responses to
student learning questions and 64% of responses to student
engagement questions are positive, suggesting that the
resources improve student learning and engagement in
general. The study does not find discernible patterns of
difference in responses from students of different ages and
varying levels of prior experience with stack smashing attacks,
program visualization tools and C programming.

Keywords—program visualization, stack smashing attacks,
active-learning, engaged pedagogy, user study

I. INTRODUCTION
Stack smashing attacks [1] are a dangerous class of

software attacks that an attacker can use to hijack the control-
flow of a program [2], [3] to execute arbitrary code on the
victim machine. Although stack smashing attacks only affect
languages with unsafe functions, they have widespread
impact due to the large amount of legacy code used in today’s
applications [4] – [7] and are still quite widespread [8], [9].
Factors such as patch lag [10] — the time it takes for a user
to update to the most recent software version, and device end-
of-life [11] — when vendors stop maintaining the firmware
or software for a device, including providing bug fixes and
security patches — increase the prevalence of stack smashing
vulnerabilities in devices that use legacy code.

Stack smashing attacks are a critical class of attacks to
teach cybersecurity students today, due to their large impact
and potential danger [12]. However, teaching stack smashing
can be an arduous task for cybersecurity educators due to the

immense background required (including process memory
layout, call stacks, buffer storage and overflows, memory
address arithmetic, shellcode), the steep learning curve that
the C language imposes on new programmers, and the
painstaking memory address space calculations involved [1],
[13] – [16].

In prior work, we presented a program visualization tool
— Dynamic, Interactive Stack-Smashing Attack
Visualization (DISSAV) — that aims to address the above
challenges and teach students about stack smashing attacks
through a guided, simulated attack scenario [17]. In this
paper, we report on the evaluation of DISSAV and an
accompanying, complementary active-learning exercise.

Through our evaluation, we aim to answer three research
questions: (R1) Do students find that DISSAV and the
active-learning exercise improve their learning of stack
smashing? (R2) Do students find DISSAV and the active-
learning exercise to be engaging resources for learning about
stack smashing? (R3) Do DISSAV and the active-learning
exercise consistently improve students’ perceived learning
and engagement across all age groups and genders, including
students with no prior experience on the topic?

To answer the above questions, we deployed DISSAV
and the active-learning exercise in two sections of a junior
level undergraduate course at UNC Charlotte named
Introduction to Security and Privacy in Fall 2021, with a total
of 104 students. We also designed and administered a student
survey to obtain student feedback on DISSAV’s interface and
on their perceived learning and engagement with the tool and
accompanying exercise.

The student survey consists of two user interface
questions, six student learning questions, and six student
engagement questions. On an average, we find that over 80%
of responses to User Interface questions, over 66% of
responses to Student Learning questions and over 63% of
responses to Student Engagement questions are positive
while 0%, under 4% and under 10% of the responses within
the same categories are negative. This indicates that, while
there are aspects that need improvement, DISSAV and the
active-learning exercise are generally beneficial and
engaging resources to learn about stack smashing.

mailto:hramapra@uncc.edu
https://orcid.org/0000-0002-1598-4677
mailto:msridhar@uncc.edu
https://orcid.org/0000-0002-7508-5024
mailto:eakeyson@uncc.edu

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 2 www.cisse.info

The main contributions of this paper are:

• We deploy DISSAV and an accompanying active-
learning exercise in the secure software module of
two sections of an introductory cybersecurity course
in Fall 2021, with 104 students.

• We formulate three research questions to evaluate
the effectiveness of DISSAV and the exercise in
improving student learning and engagement across
multiple demographic groups.

• We design and deploy a survey with Likert-scale,
open-ended and demographic questions to answer
our research questions.

• We evaluate the effectiveness of DISSAV and the
exercise through a systematic analysis of survey
data.

II. BRIEF BACKGROUND
OF EVALUATED RESOURCES

DISSAV [17] is a program visualization tool designed to
help students visualize the process of a stack smashing attack.
DISSAV guides students through constructing a stack
smashing attack in three phases, “Create the Program”,
“Construct the Payload”, and “Execute the Program”.

DISSAV is interactive and engaging, making use of
colors, fonts, icons, buttons and more to improve student
engagement, and appeal to a broader and more diverse
student audience. DISSAV offers students the ability to
customize an attack scenario (within limits), and provides
guided, incremental steps for completing the attack. A main
highlight of DISSAV is that it provides dynamic
visualization, displaying the current state of the call stack
during program execution, including a drop-down button to
visualize details about the current stack frame. DISSAV also
highlights various parts of the program code itself during
execution. DISSAV helps visualize memory addresses and
contents of the stack frames, an abstract concept for students.
DISSAV also allows students to customize vulnerable
functions and choose from a list of final attacker actions, such
as “Start a remote shell” or “Wipe OS”, through dynamic
input.

We design and deploy an active-learning exercise to
accompany DISSAV. The exercise starts by covering simple
C programming concepts (e.g., data types) then continues to
the three phases mentioned above. The activity provides
instructions on creating a vulnerable function, constructing a
payload, and executing the function. The activity encourages
students to use “different strings of different lengths and
number of words” before attempting to construct an attack
payload. We incorporate this feature to allow students to test
different inputs and to experiment and visualize how the
computer passes and stores data on the stack before
constructing a full payload. While the activity provides
instructions for payload construction along with hints, the
exact process is not given. Students must experiment by
using different numbers of NOP sleds (“no-operation
instructions”) [1], identifying and placing the correct

malicious return address (location in memory to jump to, to
execute the malicious code), and formatting that return
address. We encourage students to learn how the return
address is overwritten and how the shellcode is executed
through trial and error, similar to a real stack smashing attack.
We include questions that cover major variables on the call
stack (e.g., argv and the character ‘\x’) to highlight their
importance. At the end of the activity, we provide more high-
level questions — e.g., how did they determine their new
return address, how did they determine the length of the
payload, etc. — with the aim of emphasizing key concepts in
a stack smashing attack. The aim of the exercise is to have
students build up to these more abstract concepts such as how
the computer passes data from argv to main’s stack frame
and the execution of shellcode on the call stack to adequately
understand stack smashing attacks.

III. STUDY DESIGN AND DEPLOYMENT
To evaluate the effectiveness of DISSAV and the

accompanying active-learning exercise in improving student
learning and engagement, we designed a user study approved
by our Institutional Review Board or IRB. We deployed the
two resources in an undergraduate cybersecurity course and
used a voluntary survey to gather student perceptions on
them. Through this study, we aim to answer the research
questions listed in Section I. In addition, we aim to get
feedback on DISSAV’s usability (user interface, ease of use,
etc.).

A. Student Survey
We design our student survey to include fourteen 5-point

Likert scale questions, with answer options ranging from
Strongly Agree (Weight: 5), to Strongly Disagree (Weight:
1), two free-response questions, and some demographics
questions, as described below.

• The Likert scale questions ask for student feedback
on DISSAV’s user interface (two questions) and on
student learning (six questions) and engagement (six
questions) with DISSAV and the accompanying
exercise. These questions allow us to quantitatively
evaluate student opinions and attitudes towards the
tool and exercise.

• The two free response questions ask students to list
two strengths and two weaknesses of the tool and
exercise, respectively. We intentionally ask for a
specific number of strengths / weakness to
encourage more concrete responses from students as
opposed to having a fully open-ended question about
their experiences.

• The demographic questions ask students to select an
age range, gender, and indicate their experience level
in three different areas, namely C programming, use
of program visualization tools, and stack smashing.

B. Deployment
We deployed DISSAV, the accompanying active-

learning exercise and the voluntary student survey within the
software security module of two sections of a junior level

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 3 www.cisse.info

undergraduate course named Introduction to Security and
Privacy at UNC Charlotte in Fall 2021. The course
introduces a broad range of security topics and is a required
course for a large number of students in our program. The
course has a Data Structures and Algorithms prerequisite.
The prerequisite course and prior introductory programming
courses at UNC Charlotte are currently taught in Java, so
students coming into the introductory cybersecurity course
may not have taken any course that teaches or uses C
programming. Among the 104 students who were enrolled in
the two sections in Fall 2021, 26 students completed the
voluntary survey and consented to have their responses
collected and analyzed.

IV. RESULTS
In this section, we present our analysis of responses to the

student survey from the 26 students who consented1. Table I
shows our Likert scale questions and the distribution of
responses for each question (percentages are rounded up /
down to the nearest integer for readability). We classify the
questions into three categories, namely User Interface,
Student Learning and Student Engagement questions. In our
analysis and graphs, we use the term positive to refer to
responses of Strongly Agree or Agree, neutral for Neither
Agree Nor Disagree, and negative for Disagree or Strongly
Disagree.

For each category, we also discuss whether responses are
different for students in different age groups and with /
without prior knowledge in three relevant areas. Due to our
small overall sample size (26) and some very small
demographic groups, we do not perform statistical analysis
of demographic data, but instead discuss the distribution of
responses in general terms. We do not report or consider
gender related data because we had an extremely small
percentage of female participants, with the rest being male
participants.

Before discussing each category of questions, we make
general observations about our student demographics using
figures that show the distribution of responses across
demographic groups and which will be discussed in more
detail later. Fig. 1a (and 2a) shows that over 73% of the
students fall into the 18-22 age group2, which is the most
common age group for undergraduate students in general.
Fig. 1b (and 2b) shows that over 80% of students have little
to some prior C programming experience. Fig. 1c (and 2c)
shows that more than 57% of our students do not have prior
stack smashing knowledge, which is expected because our
course is an introductory one in security and privacy. Finally,
from Fig. 1d (and 2d), we observe that over 76% of our
students have little to some experience using program
visualization tools (in other contexts).

1. We did not conduct any analysis until after consent was verified and all our data was fully de-identified.
2. We acknowledge that some age groups have overlaps with the next. We will address this in future surveys.

A. User Interface
From the User Interface section of Table I, we observe

that more than 80% of the students have positive perceptions
of the user interface of DISSAV and the rest are neutral,
suggesting that DISSAV’s user interface is mostly clear,
consistent and attractive. For user interface related questions,
we did not observe discernible differences between students
with and without prior experience in the three areas or
students from different age groups. So, we do not present
those results.

B. Student Learning
To analyze perceived student learning, we look at data in

the Student Learning section of Table I and Fig. 1a, 1b, 1c
and 1d, which show the distribution of responses to the
Student Learning questions for different age groups and
varying levels of knowledge / experience with C
programming, stack smashing and program visualization
tools, respectively.

1) SL4 & SL5: From Table I, we observe that an
overwhelming majority of students (24 out of 26 students,
i.e., 96%) indicated that they found the contents of the
activity relevant (SL4) and helpful (SL5) to learn the targeted
concepts, with only one student being neutral and one being
negative. From the SL4 and SL5 bars in Fig. 1a, 1b, 1c and
1d, we observe that the neutral response is from a student in
the 18-22 age group with some prior C programming
experience and a little knowledge / experience in stack
smashing and program visualization tools and the negative
response is from a student in the 25-30 age group with no C
programming background and a little knowledge / experience
in stack smashing and program visualization tools. The
majority of responses, coming from students in varying age
groups and with varying prior experience, are positive. This
indicates that the activity is consistently relevant and helpful
in learning targeted concepts.

2) SL1: Although still a majority, Table I shows that less
students (65%) indicated that they found the learning content
sufficient to complete the activity (SL1), with 23% being
neutral and 12% being negative. The SL1 bars in Fig. 1a, 1b,
1c and 1d show that the neutral responses are from students
in the 18-22 age group with a little or some C programming
experience and with varying levels of stack smashing
knowledge and program visualization tool experience. The
negative responses come from students in older age groups
with varying levels of C programming experience, stack
smashing knowledge and none to little program visualization
tool experience. The varying demographics suggest that there
may generally be a need to provide more learning resources
for background concepts before exposing students to
DISSAV and the active-learning exercise where they put
everything together and attempt a dummy stack smashing
attack.

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 4 www.cisse.info

TABLE I. STUDENT SURVEY QUESTIONS AND RESPONSES (N=26)

Question Strongly
Agree Agree Neither

A / D Disagree Strongly
Disagree

User Interface

UI1: The application design is attractive (graphics, interface, layout) 7 (27%) 14 (54%) 5 (19%) 0 (0%) 0 (0%)

UI2: The text font (size and style) and colors are clear and consistent. 8 (31%) 15 (58%) 3 (11%) 0 (0%) 0 (0%)

Student learning

SL1: The learning content and/or previous activities were sufficient to help me
understand relevant concepts and do the activity smoothly. 5 (19%) 12 (46%) 6 (23%) 2 (8%) 1 (4%)

SL2: The content and structure of the activity helped me gain confidence in the
concepts. 7 (27%) 10 (38%) 9 (35%) 0 (0%) 0 (0%)

SL3: The contents of the activity are relevant to my interests. 5 (19%) 13 (50%) 7 (27%) 1 (4%) 0 (0%)

SL4: It is clear to me how the contents of the activity are related to the targeted
concepts. 9 (34%) 16 (61%) 1 (4%) 0 (0%) 0 (0%)

SL5: The activity helped me reinforce relevant concepts. 9 (34%) 16 (61%) 1 (4%) 0 (0%) 0 (0%)

SL6: This activity is an adequate teaching method for the included concepts. 8 (31%) 13 (50%) 3 (11%) 0 (0%) 2 (7%)

Student Engagement

SE1: I found the activity to be fun/highly engaging (i.e., it does not become
monotonous or boring). 7 (27%) 10 (38%) 8 (30%) 1 (4%) 0 (0%)

SE2: Completing the individual tasks/phases of the activity gave me a satisfying
feeling of accomplishment. 10 (38%) 7 (27%) 7 (27%) 2 (8%) 0 (0%)

SE3: I was so involved in the activity that I lost track of time. 0 (0%) 6 (23%) 10 (38%) 7 (27%) 3 (12%)

SE4: This activity is appropriately challenging for me. 7 (27%) 12 (46%) 6 (23%) 1 (4%) 0 (0%)

SE5: I would recommend this activity to others. 9 (34%) 11 (42%) 5 (19%) 1 (4%) 0 (0%)

SE6: I prefer learning with this style of activity to other styles that I have
experienced. 7 (27%) 13 (50%) 5 (19%) 0 (0%) 1 (4%)

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 5 www.cisse.info

(a) Distribution by Age Group

(b) Distribution by C programming experience

(c) Distribution by Stack Smashing knowledge

(d) Distribution by Program Visualization tool experience

Fig. 1. Responses to Student Learning questions

(a) Distribution by Age Group

(b) Distribution by C programming experience

(c) Distribution by Stack Smashing knowledge

(d) Distribution by Program Visualization tool experience

Fig. 2. Responses to Student Engagement questions

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 6 www.cisse.info

3) SL2 & SL3: Table I shows that 65 - 69% of students
had positive responses to SL2 and SL3, with 27 - 35% neutral
responses and 0 - 4% of negative responses. From the SL2
and SL3 bars in Fig. 1a, 1b, 1c and 1d, we see that most of
the neutral responses are from students in the 18-22 age
group, but with varying levels of C programming experience,
stack smashing knowledge and program visualization tool
experience. Responses indicate that while the majority of
students felt the activity was relevant to them and helped
them gain confidence in the concepts, further improvements
may be needed to tie the activity better to student interests
and needs.

4) SL6: Finally, for SL6, Table I shows that a majority
(76%) of the students had positive responses, with 11% of
students being neutral and 11% with negative perceptions.
The SL6 bars in Fig. 1a, 1b, 1c and 1d show that there are
neutral and/or negative responses from students in all age
groups and with varying background experience /
knowledge. We conclude that perceptions about whether the
activity is an adequate teaching method may partly be
personal preference, but may be partly related to potential
deficiencies that we already noted in our discussion of
responses to other Student Learning questions.

C. Student Engagement
To analyze student engagement, we look at data in the

Student Engagement section of Table I and Fig. 2a, 2b, 2c
and 2d, which show the distribution of responses to the
Student Engagement questions for different age groups and
varying levels of knowledge / experience with C
programming, stack smashing and program visualization
tools, respectively.

1) SE1 & SE2: From Table I, we see that over 65% of the
students had positive responses to SE1 and SE2, with

26 to 30% of the responses being neutral and only 3 to
7% of them being negative. From the SE1 and SE2 bars in
Fig. 2a, 2b, 2c and 2d, we see that positive responses are
distributed across most of the groups. Most of the neutral
responses are from students in the two younger age groups
with varying levels of C programming experience, none or
little stack smashing knowledge and varying levels of
program visualization tool experience. We also see that the
negative responses are from students in older age groups with
none to little C programming, stack smashing and program
visualization tool knowledge / experience. Overall, this data
indicates that DISSAV and the active-learning exercise are
engaging in general to students in most groups, but not
particularly exciting to any specific groups of students.

2) SE4 & SE6: Table I shows that 73 to 76% of the
responses to SE4 and SE6 are positive, with 19 to 23% of
them being neutral and less than 4% being negative. The bars
for SE4 and SE6 in Fig. 2a, 2b, 2c and 2d show that most of
the positive responses are from students in younger age
groups, but with varying levels of C programming, stack
smashing and program visualization tool knowledge /
experience. Neutral responses come from students across
multiple age groups and varying levels of C programming

and program visualization tool experience, but with little to
no stack smashing knowledge. Negative responses are
mostly from students in older age groups and lower levels of
C programming, stack smashing and program visualization
tool knowledge / experience. These results suggest that older
students with lower levels of prior experience may not have
found DISSAV and the active-learning exercise to be
appropriately challenging or in a style appealing to them.
However, since the numbers of students in most of our
groups are small, we do not make any conclusive claim.

3) SE3: From Table I, we see that only 23% of the
responses are positive, with 38% of them being neutral and
38% of them being negative. The SE3 bars in Fig. 2a, 2b, 2c
and 2d show that positive, neutral and negative responses are
distributed across different age groups and backgrounds. This
indicates that the DISSAV and the active-learning exercise
are generally not engrossing or immersive enough for
students to feel that they “lost track of time” (which we note
and recognize is a tall order in general for technical learning
activities).

4) SE5: Table I shows that almost 77% of students
indicated that they would recommend DISSAV and the
active-learning exercise, with 19% being neutral and less
than 4% being negative. Positive, neutral and negative
responses are spread out across students in all age groups
except 25-30, with varying levels of C programming, stack
smashing and program visualization tool knowledge /
experience. Overall, this is a very encouraging result. It
suggests that, while there may be some improvements needed
to DISSAV and the active-learning exercise, they are solid
resources that a majority of students would recommend them
to others.

D. Open-ended responses
In addition to the Likert-scale questions, we asked two

free-response questions about DISSAV and the active-
learning exercise. First, we asked students to “list two strong
aspects of the activity”. We find three aspects of the tool that
are common among several student answers. The most
common aspect that students like is the visual representation
of different components. Another common, strong aspect is
the ease of navigation throughout the tool. Finally, students
also state that they find the tool engaging. Then, we asked
students to “give two suggestions to improve the activity”
and find two suggestions that are common among several
student answers. The most common suggestion is to provide
more explanation or hints for the process of simulating a
stack smashing attack using DISSAV, especially
constructing an attack payload. While explanations / hints are
provided in the activity, some students feel that more detail
would make the activity smoother. The other common
suggestion is that the tool needs User Interface
improvements, specifically better window scaling for
different laptop and screen sizes.

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 7 www.cisse.info

V. DISCUSSION

A. Results
Overall, the results of our data analysis are encouraging.

On an average, we find that over 80% of student responses to
User Interface questions are positive, indicating that
DISSAV has a well-designed interface. An average of over
66% of the responses to Student Learning questions are
positive, with over 96% of positive responses to questions
related to the relevance to and reinforcement of targeted
concepts. This demonstrates that DISSAV and the active-
learning exercise have a high potential of improving student
learning in the complex and important topic of stack
smashing, thus answering research question R1. We find that
an average of over 63% of the responses to Student
Engagement questions are positive, with that number going
up to over 71% if we remove the question that asks students
if they were so involved in the activity that they lost track of
time (SE3). This indicates that, with some improvements,
DISSAV and the active-learning exercise can effectively
engage students in the learning experience, thus answering
research question R2. There are differences in the distribution
of responses from students in different age groups and
students with different levels of knowledge / experience in C
programming, stack smashing and program visualization
tools. However, from our current data, we do not observe
specific benefits or shortcomings that our resources cause to
specific groups. The sizes of some of the groups are too small
for us to determine whether the observed differences in
responses are significant and related to the demographics or
whether they are simply differences between the perceptions
of individual students, unrelated to the groups to which they
belong. Thus, we are unable to conclusively answer research
question R3.

B. Challenges and Limitations
We faced multiple challenges related to this study. First,

due to the fact that Fall 2021 was the first semester back on
campus after the COVID-19 pandemic, some students were
apprehensive about being back. This made it more difficult
to engage them in classroom activities. Second, stack
smashing requires a vast amount of background information,
making it difficult to create activities that are in-depth, yet
short enough to be completed in a class period while also
being engaging. Lastly, we faced a significant challenge in
encouraging students to complete and submit the voluntary
student survey because it had no associated grade
component. Specifically, only 26 out of 104 students
completed the voluntary survey and consented to have their
responses collected and analyzed. This prevented a more
substantial statistical analysis of responses to the student
survey and limited us to general observations.

VI. RELATED WORKS
Sasano [18] presents a tool for visualizing buffer

overflows in C programs and detecting return address
overwriting. While the tool targets novice C programmers,
the authors suggest that it may be useful for experienced
programmers as well. The paper focuses on the presentation
of the tool and does not provide an evaluation of the tool.

Zhang et al. [19] develop and evaluate a web-based
interactive visualization tool to teach buffer overflow
concepts. The authors evaluate the effectiveness of this tool
by conducting a study that uses a pre-test / post-test and focus
group discussions in two small classes (one undergraduate
and one graduate). The study finds that using such a tool to
learn about buffer overflow concepts improved student
motivation / engagement and made it easier for them to
understand the topic.

Walker et al. [20] present and report their experiences
with a program analysis and visualization tool designed to
help students to visualize a program’s address space in order
to eventually understand security issues within C programs.
The authors evaluate the tool in a junior level systems
programming courses, via a pre-test / post-test and an
evaluation form. The study finds a significant improvement
in post-test scores when compared to pre-test scores and
reports generally positive student feedback.

Simple Machine Simulator (SMS) [13] is an interactive
visualization tool that demonstrates stack frame and buffer
overflow concepts and their effects on process memory in a
hands-on lab environment. While the paper does not present
a detailed evaluation of the tool, the authors indicate that the
SMS tool was used successfully in their computer security
course and specifically note that non-Computer Science
majors were able to complete and understand the concepts
through the use of SMS.

Unlike DISSAV, none of the above security related
visualization tools present the ability to simulate a stack
smashing attack through a customizable C program,
dynamically created payload and an interactive call stack
visualization.

VII. CONCLUSIONS
In this paper, we present the deployment and analysis of

a program visualization tool, DISSAV, and an accompanying
active-learning exercise to teach stack smashing, a key
software security attack. The visualization tool and active-
learning exercise work together to guide students through
various challenges presented by stack smashing attacks.

We present the results of deploying DISSAV and the
accompanying exercise in an undergraduate cybersecurity
course that introduces a broad range of security topics. We
report on the results of simple study that collects and
evaluates student perceptions on the user interface of
DISSAV and the effectiveness of the two resources in
improving student learning and engagement. The study finds
that the majority of students find DISSAV and the active-
learning exercise engaging and that the resources improve
their perceived learning.

VIII. ONGOING AND FUTURE WORKS
In recent work, we transformed a sequence of activities

that aim to teach students about strings and buffer overflows
in C, process memory layout, and stack smashing attacks into
shorter, more engaging, guided learning style activities. We
expect that these activities will help students develop a more

2023 Journal of The Colloquium for Information Systems Security Education, Volume 10, No. 1, Winter 2023

979-8-3858-4381-7/23/$26.00 ©2023 CISSE 8 www.cisse.info

solid understanding of foundational knowledge before being
exposed to DISSAV. We have also enhanced the active-
learning exercise accompanying DISSAV to include more
explanations and hints to help students work through the tool,
construct an attack payload and simulate a stack smashing
attack. We deployed the guided learning activities and the
enhanced active-learning exercise in Fall 2022 and collected
data. We plan to analyze this data in future work. We also
plan to make DISSAV’s user interface more responsive so
that it adapts to different screen sizes and devices. Overall,
we expect that these changes will improve student learning
and engagement further. To gain insights into actual
improvements in student learning, we plan to conduct a
comparative analysis of student performance on assessments
related to stack smashing from semesters prior to the
inclusion of the guided learning style activities and DISSAV
and semesters during which they were included.

REFERENCES
[1] A. One. Smashing the stack for fun and profit. Accessed on

12.12.2022. [Online]. Available:
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pd
f

[2] C. Hritcu. Control hijacking attacks. Accessed on 12.12.2022.
[Online]. Available: https://catalin-hritcu.github.io/talks/04-control-
hijacking-attacks.pdf

[3] L.-H. Chen, F.-H. Hsu, C.-H. Huang, C.-W. Ou, C.-J. Lin, and S.-C.
Liu, “A robust kernel-based solution to control-hijacking buffer
overflow attacks,” J. Inf. Sci. Eng., vol. 27, pp. 869–890, 05 2011.

[4] M. Khurana, R. Yadav, and M. Kumari, “Buffer overflow and SQL
injection: To remotely attack and access information,” Cyber
Security, pp. 301–313, 2018.

[5] J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer, “Architecture support for
defending against buffer overflow attacks,” Coordinated Science
Laboratory Report no. UILU-ENG-02-2205, CRHC-02-05, 2002.

[6] V. English, I. Obaidat, and M. Sridhar, “Exploiting memory
corruption vulnerabilities in connman for IoT devices,” Proceedings
of the 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 247–255, 2019.

[7] A. Mohanty, I. Obaidat, F. Yilmaz, and M. Sridhar, “Control-
hijacking vulnerabilities in IoT firmware: A brief survey,”
Proceedings of the 1st International Workshop on Security and
Privacy for the Internet-of-Things, 04 2018.

[8] L. Vaas. Pulse secure VPNs get quick fix for critical RCE. Accessed
on 12.12.2022. [Online]. Available: https://threatpost.com/pulse-
secure-vpns-critical-rce/166437/

[9] S. Gatlan. Foxit reader bug lets attackers run malicious code via
PDFs. Accessed on 12.12.2022. [On-line]. Available:
https://www.bleepingcomputer.com/news/security/foxit-reader-bug-
lets-attackers-run-malicious-code-via-pdfs/

[10] I. Murphy. Do you suffer from patch lag? Accessed on 12.12.2022.
[Online]. Available:
https://www.enterprisetimes.co.uk/2021/03/10/do-you-suffer-from-
patch-lag/

[11] D. Wang, M. Jiang, R. Chang, Y. Zhou, B. Hou, X. Luo, L. Wu, and
K. Ren, “A measurement study on the (in)security of End-of-Life
(EoL) embedded devices,” arXiv preprint arXiv:2105.14298, 2021.

[12] L. Caviglione, S. Wendzel, A. Mileva, and S. Vrhovec, “Guest
editorial: Multidisciplinary solutions to modern cybersecurity
challenges,” Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), vol. 12, no. 4,
pp. 1–3, December 2021.

[13] D. Schweitzer and J. Boleng, “A simple machine simulator for
teaching stack frames,” in Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 2010, pp. 361–365.

[14] E. Heinsen and C. McDonald, “Program visualization and
explanation for novice C programmers,” Proceedings of the
Sixteenth Australasian Computing Education Conference, vol. 148,
pp. 51–57, 2014.

[15] D. Budny, L. Lund, J. Vipperman, and J. Patzer, “Four steps to
teaching c programming,” in 32nd Annual Frontiers in Education,
vol. 2. IEEE, 2002.

[16] D. Radošević, T. Orehovački, and A. Lovrenčić, “New approaches
and tools in teaching programming,” in Radošević, D., Orehovački,
T., Lovrenčić, A: “New Approaches and Tools in Teaching
Programming”, Central European Conference on Information and
Intelligent Systems, CECIIS, 2009.

[17] E. Akeyson, H. Ramaprasad, and M. Sridhar, “DISSAV: A
Dynamic, Interactive Stack-Smashing Attack Visualization tool,”
2022 Journal of The Colloquium for Information Systems Security
Education, vol. 9, no. 1, 2022.

[18] I. Sasano, “A tool for visualizing buffer overflow with detecting
return address overwriting,” EAI Endorsed Transactions on Self-
Adaptive Systems, vol. 2, no. 5, 2016.

[19] J. Zhang, X. Yuan, J. Johnson, J. Xu, and M. Vanamala,
“Developing and assessing a web-based interactive visualization tool
to teach buffer overflow concepts,” IEEE Frontiers in Education
Conference, pp. 1–7, 2020.

[20] J. Walker, M. Wang, S. Carr, J. Mayo, and C.-K. Shene, “A system
for visualizing the process address space in the context of teaching
secure coding in C,” Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pp. 1033–1039, 2020.

https://inst.eecs.berkeley.edu/%7Ecs161/fa08/papers/stack_smashing.pdf
https://inst.eecs.berkeley.edu/%7Ecs161/fa08/papers/stack_smashing.pdf
https://catalin-hritcu.github.io/talks/04-control-hijacking-attacks.pdf
https://catalin-hritcu.github.io/talks/04-control-hijacking-attacks.pdf
https://threatpost.com/pulse-secure-vpns-critical-rce/166437/
https://threatpost.com/pulse-secure-vpns-critical-rce/166437/
https://www.bleepingcomputer.com/news/security/foxit-reader-bug-lets-attackers-run-malicious-code-via-pdfs/
https://www.bleepingcomputer.com/news/security/foxit-reader-bug-lets-attackers-run-malicious-code-via-pdfs/
https://www.enterprisetimes.co.uk/2021/03/10/do-you-suffer-from-patch-lag/
https://www.enterprisetimes.co.uk/2021/03/10/do-you-suffer-from-patch-lag/

	Interactive Program Visualization to Teach Stack Smashing: An Experience Report
	I. Introduction
	II. Brief Background of Evaluated Resources
	III. Study Design and Deployment
	A. Student Survey
	B. Deployment

	IV. Results
	A. User Interface
	B. Student Learning
	C. Student Engagement
	D. Open-ended responses

	V. Discussion
	A. Results
	B. Challenges and Limitations

	VI. Related Works
	VII. Conclusions
	VIII. Ongoing and Future Works
	References

