
2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 1 www.cisse.info

Leveraging Browser-Based Virtual Machines to

Teach Operating System Fundamentals

Matt Ruff

College of Information Sciences and Technology

The Pennsylvania State University

University Park, PA, USA

mvr5567@psu.edu

Nicklaus A. Giacobe

College of Information Sciences and Technology

The Pennsylvania State University

University Park, PA, USA

nxg13@psu.edu

Abstract—In this paper, we identify challenges in

delivering cybersecurity labs, including the overhead costs of

delivering virtual machines to students. We propose instead to

use JavaScript driven Browser-Based Virtual Machines

(BBVMs) to overcome the challenges of Type I and II

hypervisors, as well as vendor- specific cybersecurity lab

ranges. BBVMs deliver configured VMs at lower cost to the

student’s web browser and are much easier for students to use.

BBVMs require no hardware or infrastructure for students

besides an Internet-connected device. As such, labs delivery via

BBVMs can be run on mobile phones, tablets, or computers

with limited resources. With this in mind, the authors detail

BBVM implementation for cybersecurity labs. With very little

physical infrastructure, programming, and systems

administration, an educational institution at any level may

implement a cybersecurity lab in such an environment. Our

examples focus on addressing learning the Linux command

line, introducing different Linux commands, and deepen

student understanding of the Linux operating system itself. We

combine BBVMs with previous work to address configuration,

repeatability, assessment, academic integrity/cheating, and

other similar constraints using our polymorphic configuration

methodology called PolyLab. Lastly, we include a step-by-step

procedure to implement BBVMs and show use-cases for

cybersecurity education.

Keywords—operating system, Linux, command line,

education, virtual machines, cybersecurity

I. INTRODUCTION

Previously, information technology and cybersecurity
students relied on being physically present in a laboratory
environment to gain hands-on skills in an air gapped sandbox
to reduce concerns of unintentionally breaking the law. As
hypervisors became more common, this made it easier for
students to learn as one could simply create new virtual
machines instead of physical ones. Unfortunately, this
approach has several issues including cost of the hypervisor
software and hardware limitations. With the advent of cloud
computing, this further lowered the barrier to entry for
learning hands-on skills. The main downside is that this
typically requires a payment to a third-party company for
infrastructure access, something that is not feasible at large
scale. In academia, if lab content (regardless of the physical
infrastructure) is static, educators can never ensure that
students do not cheat or create a walkthrough and post it
online.

Our solution ties together two concepts – browser-based
virtual machines (BBVMs) and polymorphic system
configuration to overcome these challenges. Students will be
able to learn critical systems administration skills in a
dynamic, hands-on environment and the only physical
requirements are a web browser which supports JavaScript
and an Internet connection.

II. CHALLENGES AND LIMITATIONS OF

VIRTUALIZED CYBERSECURITY LAB SYSTEMS

Most universities provide student access to laboratory
environments one of three ways: in-person at on campus
locations, on their own computers, or remotely via the web
[5]. Lately, a fourth method of lab access has made its debut:
Cybersecurity Labs as a Service. Regardless of how the lab
environments are accessed, the lab environment should a)
provide Internet access to acquire tools b) be isolated from
campus networks c) provide realism d) have management
oversight, and e) be provided to both resident and
online/remote students [9].

A. In-Person Labs on University-Provided Hardware

The first approach of forcing students to come to campus
to do lab-based assignments requires the professor(s) and
teaching assistant(s) to build physical or virtual machines,
create master copies, commonly referred to as golden images.
There are a multitude of issues with this approach. First, this
is exclusive as it does not allow distance learning as these
labs are not easy to access remotely and are immobile [10].
Some instructors attempt to rectify this by doing a
demonstration over broadcasting software, though this does
not provide students with a hands-on experience [10].
Second, if running on Type II hypervisors on desktop
hardware in the classroom, the hardware limitations of the
systems are a bottleneck [5]. These virtual machines may run
slowly, as they are typically provisioned in a limited resource
capacity. Even if educators deployed the lab environment in
a server environment on a Type I hypervisor, they still may
have to throttle the amount of memory and processor
allocation to ensure that everyone has an environment to
work in. Third, these labs only have a handful of machines
available to provision at one point in time [5].

B. Labs on Students’ Hardware

The approach of using a student-owner machine and a
Type II/desktop hypervisor lends itself to several of the same

https://cisse.info/
mailto:mvr5567@psu.edu
mailto:nxg13@psu.edu

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 2 www.cisse.info

issues as using university-provided hardware. For instance,
students’ computers are also limited by storage space,
processing power, and memory available. In addition, this
forces students to learn how to provision virtual machines
using a hypervisor. This can be beneficial, as students may
familiarize themselves with industry-leading software such
as VMware but may also cause headaches as it is typical to
change BIOS settings to use virtualized hardware. This also
forces instructors into troubleshooting various issues that
may arise due to the host operating system and hypervisor.

Du, et al. use this methodology with the SEED Labs [3].
In addition to the hypervisor installation, they experience
issues with each lab’s guest operating system changing from
one version of Ubuntu X.04 LTS to the next. This causes
dependency issues with the lab configuration. At last check,
Du was working on a Dockerized version of the experience,
so that each configuration can remain static, even if the guest
OS changes. While this will address the stability of the lab
from one long-term-stable (LTS) version of Ubuntu to the
next, it does not address the hypervisor and network
configuration concerns.

C. Remotely Accessed via Web through Jump Boxes

Some academic institutions moved to providing access
via Secure Shell (SSH) or Microsoft’s Remote Desktop
Protocol (RDP), as the institution itself hosted externally
facing software [5]. If the students are already on a *NIX
system, then SSH is available via the command-line interface
(CLI). Otherwise, if on Windows, students must download
and use a tool such as PuTTY. Likewise, if using the Remote
Desktop Protocol, students on *NIX systems must download
the appropriate RDP tool for their systems. Other institutions
provide access by running a VMware ESX instance or
VMware vCenter server which students may connect to. Like
the other two solutions, this is limited by the hardware
resources as these virtual machines are typically provisioned
with few resources. One study reports that the most
commonly reported down-sides to hosting remotely accessed
labs are funding and hardware [7]. Regardless of how the lab
is remotely accessed, students are typically given a Virtual
Private Network (VPN) and connect to the lab via that [9].
These environments could also be hosted in the cloud, such
as on Amazon Web Services (AWS) as it may provide a way
for educators with less funding to provide the same
capabilities [10].

D. Cybersecurity Labs as a Service

The newest method of cybersecurity lab that exists is that
of a service. One in which educators can pay a service
provider, such as U.S. Cyber Range, Practice Labs, Tele-Lab
[10]. These are commonly referred to as Cyber Ranges and
they simulate cyber operations against fictitious
organizations [8]. These options exist to eliminate the need
to provision virtual machines for students. The instructors
must create a golden image, as if the lab is being hosted on
premises, but instead they send it to the cybersecurity lab
service. This vendor hosts the lab, and the students log in.
This suffers from many of the same faults as previous
instances, such as the lack of resources. In the authors’

experiences, these labs typically provide increased latency
which serve as a source of frustration for students. These labs
may also require specific configurations to work on the
vendor’s platform. This non-trivial task of adaptation of the
instructor’s lab to meet the vendor’s requirements can be time
consuming.

III. RELATED WORKS

A number of other innovative methods of providing
access to cyber-security labs in the cloud have come before
this iteration of PolyLab, and as such, our paper builds upon
a handful of other similar ideas in other problem spaces:
namely browser-based virtual machines, automatic problem
generation for Capture the Flags, and hands-on Linux labs.
We merge these three ideas together and apply the solution
first to hands-on instruction of Linux system administration
skills and commands and hopefully towards other skills
critical for a successful career in information technology and
cybersecurity.

A. Cloud-Based Virtual Machines for Students

Hosting virtual machines in the cloud for students to
access is increasingly common and will provide in-person
and remote students the same lab setups and experiences [9].
Providing these labs to all students, regardless of physical
proximity to the university, is paramount for a well-trained
cybersecurity workforce. One of the most critical factors of
the move to the cloud is the ease of use for students, and the
fact that the golden images provide all required software tools
to students [9]. This mitigates any issues with installation by
students and enables instructors to identify pitfalls with
licensing, installation, virtual machine’s memory capacity,
and dependent packages. Removing these potential issues
from the students’ hands enables the students to focus solely
on meeting the objectives of the lab itself.

Tele-Lab is an example of a cloud-based virtual machine.
Students can connect to the site via web browser, but they
must establish a remote desktop connection to a virtual
machine [10]. The labs in Tele-Lab are referred to as learning
units, and they follow identical formats: academic
background information, the presentation of tools that could
be used to carry out attacks, and then asking the student to
conduct the attack.

Nevertheless, it is quite common to have to build and
provision virtual machines by hand, at least once. RunLabs,
from the University of Indiana – Purdue University
Indianapolis, attempted to rectify this by using JavaScript
Object Notation (JSON) files for the creation of virtual
machines with specified network settings [5]. This
automation saves time and is ideal for rapidly provisioning
an operating system with a specified lab inside of it.

B. Browser-Based JavaScript Virtual Machines

Bellard seems to have invented the first iteration of a
JavaScript-based Linux virtual machine in a web browser in
2011 [1]. This was built upon the QEMU emulator, which
Bellard originally created and presented at the USENIX
conference in 2005 [1]. QEMU is a machine emulator which
can run a myriad of operating systems [1]. To use JSLinux, a

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 3 www.cisse.info

disk image would have to be built using QEMU and then
JSLinux would interface with it. When porting PolyLab to
the web began, we initially attempted to modify and use
JSLinux. JSLinux is not truly open source and is copyrighted.
At that time, user-friendly documentation for JSLinux was
not available, and deobfuscated source code was only
available via third-party GitHub repositories. As such, the
authors sought out other solutions that worked similarly to
JSLinux and QEMU.

After attempting to use JSLinux, we found the v86 project
on GitHub by the user “copy” [2]. Licensed under a BSD 2-
Clause license, we were able to use the v86 project as long as
the original copyright is retained. With this in mind, we used
this as the underlying platform for PolyLab. Several
challenges were encountered and subsequently overcome
along the way. First, the documentation for building a new
image was three years old and was catered to Arch Linux [2].
As it was three years old, it was written with a specific variant
of Arch Linux in mind, as the v86 project requires an x86
architecture. At the time of writing, Arch Linux 2020-11-01
works with the v86 project. Once a successful Arch Linux
image was built, we were able to embed our polymorphic
configuration code and the required packages. We carefully
worked to minimize the size of the disk image itself. From
there, v86 uses the 9p filesystem. This required manual steps
to be executed. We will submit a pull request to the v86
project to update the documentation in the near future. With
a 9p filesystem and disk image, artifacts must be created to
serve the v86 filesystem over the web [2]. As a side note, we
did not utilize any networking functionality, even though v86
can support networking via emulation. This may be of use to
future PolyLab projects.

C. Current Hands-On Cybersecurity Lab Content

Several different lab environments exist for students to
learn cybersecurity skills. Some of these are remotely
accessed via the web browser or VPN credentials, some of
them are hosted locally. Of the currently available
cybersecurity laboratory environments, the Security
Education Labs, or SEED Labs, from Syracuse University is
one of the most well-known. It is provided via a ready-to-go
virtual machine image that works with Oracle’s VirtualBox
[4]. These labs provide many different exercises for students
to gain an understanding of various cybersecurity attacks and
defenses. Examples of these exercises include Buffer
Overflows, Distributed Denial-of-Service (DDoS) and
Cross-Site Scripting (XSS)[4]. In December 2020, a SEED
Labs 2.0 Beta was released [3]. This upgrades the virtual
machine to a 64-bit version of Ubuntu 20.04 Linux. SEED

Labs also provides a cloud-ready variant of the virtual
machine for ease of use if not deployed locally, but remotely
in the cloud.

In 2017, a pair of researchers modified SEED Labs, as
written, to make them more useful for job seekers as the labs
do not venture into domains such as malware analysis and
reverse engineering, and vulnerability scanning and
assessing [6]. As such, they have created an extension of the
SEED Labs which they hope will be integrated with SEED
Labs. These exercises provide yet another way for students
to gain hands-on experience with industry-standard tools,
such as writing YARA rules [6].

Another common cybersecurity exercise is the Bandit
exercise hosted at https://bandit.overthewire.org. Like other
websites, the purpose of Bandit is for Linux learning, but,
similar to SEED Labs, it suffers from the problem of having
become too public, and as such, walkthroughs have become
widespread and are easily available with a simple Google
query.

IV. SYSTEM DESIGN

A. Logical Components of a Lab

We now present the overall system design of several
components to deliver a polymorphic experience to learn the
Linux command line, with the goal of launching such an
environment via a BBVM. The intent here is to be able to
execute the lab experience with little-to-no infrastructure or
resources. We wish to avoid hypervisors on local computers
or a complex lab to deliver access to sandboxed guest
operating systems. Instead, we rely on the JavaScript-based
operating systems. We deliver the configured virtual machine
to the student via a standard web server/browser
arrangement. The virtual machine is delivered with scripts
installed to configure the system to run the exercise. As the
student clicks on the link, their browser downloads the virtual
machine and runs it in their own browser. From this point
forward, all resources run on the student’s computer.

In Fig. 1, the exercise is coded in Step 1 – Exercise
Generation. In this stage, developers program the different
parts of the exercise. For the exercise presented here, each
“level” of the game is generated. The password for the next
level is encoded from the value of the user’s hash. A script is
created to fabricate the exercise on the virtual machine once
the user enters their credentials. The script is pre-populated
on the virtual machine image so that it can be delivered when
the user asks for it in Step 2, Virtual Machine Delivery.

https://cisse.info/
https://bandit.overthewire.org/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 4 www.cisse.info

Fig. 1. System Design

Once the end-user has asked for and received the virtual
machine image, the virtual machine is sent, and all future
actions are completed inside the JavaScript sandbox in the
browser on the end-user’s computer. It runs and launches the
guest operating system and initiates the Exercise Generation
script. The user is asked for their ID. Step 3, Parameter

Generation begins, and each parameter is inserted into the
exercise. Target files are placed on the guest operating
system and the game is started at Step 4, Browser-Based
Interaction. At this point, the user plays the game, figures out
the answers to the various challenges and records the answers
to each level (see Fig. 2).

Fig. 2. Exercise Generation Using Javascript Virtual Machines

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 5 www.cisse.info

Fig. 3. Answer Evaluation

The user completes the exercise and then goes to a web
form to enter their answers and verify that they completed the
exercise. On that web server, Step 5 – Expected Answer
Generation and Evaluation runs. The Exercise Evaluation
Script asks the end user for their ID and generates the
expected answers. It compares those answers to the ones the
user provides and generates a score (see Fig. 3).

B. Disconnected Parameterization
We leverage the same technologies that Giacobe and

Kohler used in PolyLab. The generation of parameters lend
themselves to the disconnected nature of the JavaScript-
based virtual machines on the end-user’s browser. We cannot
expect reliable network communication between the Linux
virtual machine on the student’s browser and any other server
or system on the Internet. In fact, for many cybersecurity
exercises, we may wish to completely block network access
to keep the student “safe” from accidental use of
cybersecurity/hacker tools. However, these parameters are
generated from the hash of the user’s ID and the exercise
password. We can verify that the student has figured out the
expected/right answers and verify their answers on a simple
web form.

At some point in the future, integration of answer
verifiers in commonly-used course management systems
(Canvas, Blackboard, Google Classroom, etc.) may be
possible if those systems can be configured with the
algorithmic computation of the expected answers.

C. Repeatability

One challenge with some exercises is that they are not
repeatable. Once a student knows the expected answer,
giving them the question set again defeats the goal of having
them do the exercise a second time. We solve this problem as
a new set of questions can be generated by manipulating the
input values of the hash. One such way is to simply add an
“attempt number” to the input values of userid and password.
Since a hash is used to create the pseudorandom parameter
values, a good hashing algorithm (SHA-2, SHA-3, etc.) will
be able to generate 224-512 bits of unique values. Each
variation of the combination of userid, exercise password and
other input values like dates, attempt numbers, would provide
a different set of lab parameters.

This system is essentially capable of creating billions
upon billions of different iterations of the labs, assuming that
every bit of a long hash digest is used to parameterize an
exercise.

V. CREATING A BROWSER-BASED VIRTUAL MACHINE

PolyLab’s Browser-Based Virtual Machines consist of
four critical components: 1) the PolyLab code stored in a
GitHub repository, 2) David Humphrey’s browser-vm
GitHub repository, which uses 3) the Build-root tool, and 4)
the v86 project created by Fabian (who goes by his handle
‘copy’). Ultimately, the PolyLab code gets embedded in a
Buildroot- generated ISO operating system and launched by
v86.

To begin building a Browser-Based Virtual Machine, one
must first have an idea of which target operating system they

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 6 www.cisse.info

would like to use. Currently, v86 supports about 20 operating
systems [2]. Originally, both Arch Linux and Debian were
considered as Copy should support both. At the time of
testing, we were unable to successfully build either. This was
because the documentation in the v86 project was several
years out of date for Arch Linux, and the Debian Docker
container had several errors which prevented it from building
correctly [2]. While we worked to fix these errors and update
the documentation accordingly, we also pursued Buildroot as
a viable alternative in case Arch’s and Debian’s issues could
not be rectified in reasonable time.

At this point, Buildroot was the most direct path forward.
Conveniently, it kept the images small, as this would be
transmitted over the user’s network connection, and the file
system itself would also be stored in the browser cache. This
is because the specified Buildroot configuration uses the 9P
file system.

To install all the dependencies required for v86 and
browser-vm onto a fully updated Ubuntu 20.04 instance, the
following commands are needed:

sudo apt install openjdk-11-jdk git make

gcc gdb nasm qemu-system clang node npm

docker

sudo apt-get install libc6:i386

Users will also have to install Rust Nightly build with a
wasm32-unknown-unknown target. Following this, users
will run the following git clone commands:

git clone https://github.com/copy/v86

git clone

https://github.com/humphd/browser- vm git

clone

https://github.com/giacobe/PolyBandit

After these commands are executed, everything will be
on the system. Users can also test the built v86 system in
accordance with the v86 README.md file using wget and
make to pull down test images and build them. This does add
extra files to the disk and may not be necessary or desired on
production systems.

Next, the user should move onto building the Buildroot
Docker container from the buildroot-vm directory, as shown
below. This creates the Docker image which can then be ran
in a few different ways – one for rapid building, and one used
for debugging or testing. To build the Docker container and
run it for production, using the buildroot-vm defaults:

sudo docker -t buildroot .

sudo docker run –rm –name build- v86 -v

$PWD/dist:/build -v

$PWD/buildroot-v86/:/buildroot-v86

buildroot

The Buildroot Docker container generates a .iso file ready
for use within the v86 system, but it may not be suitable for
our purposes. It is good for testing, and seeing how the
overall system works. To modify the Buildroot filesystem,
ensure that the rootfs_overlay/ directory has a directory

inside of it called "home" where the user will be dropped into.
Inside of the home directory, place any subdirectories or files
for the user to find upon first boot. To modify things like the
hostname, this can be done using an interactive Docker
session that drops the user into a Bash shell. Within Bash, the
user may modify via make menuconfig and make linux-
menuconfig to modify information such as the hostname and
various packages that should be pre- built into the .iso. This
results in overall modifications to the makefiles.

VI. MERGING BROWSER BASED VIRTUAL

MACHINES AND CYBERSECURITY LABS

This work merges several previously presented ideas
together. As presented here, the end goal is to require only a
web browser and an Internet connection on the behalf of the
student, and only a simple web server to deliver the BBVM.
For the student, anyone in the world should be able access
via a cellular phone, a tablet, or a computer. Access to a web
browser with JavaScript enabled is the only requirement. For
the instructor/institution, only a basic web server is required
to deliver the configured VM.

When a student lands on the webpage, they will be
dropped into a custom JavaScript-based Arch Linux virtual
machine which is self-contained in the web browser. When
the user exits the webpage, currently their session is gone.
This system will provide several features to the user that
should be familiar to anyone with experience using virtual
machines. For instance, this will enable the user to save the
state of their virtual machine to their local machine, at which
point it could be restored back into the system at a later point.
Similarly, one can upload files and folders directly to the
virtual machine for testing. The combination of the saving
and restoring in tandem with the file and folder upload means
that it is fairly easy to share the state and content of a system.
With this in mind, it can be used for students to aid their peers
if they are stuck, or for the teaching team to troubleshoot
issues encountered by students.

VII. CONCLUSION

We presented the incorporation of JavaScript-based
virtual machines into a system to teach the basics of the Linux
command line to new students in cybersecurity academic
programs. This enhancement will allow us to engage students
at our institution as well as students from across the world.
Because a virtual machine runs in the end-user’s web
browser, no centralized hypervisor or resources are needed,
which results in significantly lower costs to deliver this style
of exercise to students.

We also presented concepts of polymorphism that will
have the potential to positively impact student engagement
and retention, while reducing copy/paste cheating. Future
work in this area will focus on the specific learning objective
development for the command line exercises. We have three
command line Linux exercises planned. Additionally, we
plan to develop exercises in basic and intermediate databases
(SQL), as well as several exercises in network security.

https://cisse.info/
https://github.com/copy/v86
https://github.com/humphd/browser-
https://github.com/giacobe/PolyBandit

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 7 www.cisse.info

REFERENCES

[1] Fabrice Bellard. [n.d.]. QEMU, a Fast and Portable Dynamic
Translator. Technical Report.

[2] Copy. [n.d.]. v86: x86 virtualization in your browser, recompiling
x86 to wasm on the fly. https://github.com/copy/v86

[3] Wenliang Du. [n.d.]. SEED Project. https://seedsecuritylabs.org/

[4] Wenliang Du, Zhouxuan Teng, and Ronghua Wang. 2007. SEED: A
Suite of Instructional Laboratories for Computer SEcurity
EDucation *. Technical Report. http://www.cis.syr.edu/

[5] Connie Justice and Vyas Rushabh. 2017. Cybersecurity Education:
RunLabs Rapidly Create Virtualized Labs Based on a Simple
Configuration File. Technical Report.
https://scholarworks.iupui.edu/handle/1805/15799

[6] Min Jin Kwon, Gowoon Kwak, Siyoung Jun, Hyung Jong Kim, and
Hae Young Lee. 2018. Enriching Security Education Hands-on Labs
with Practical Exercises. In Proceedings - 2017 International
Conference on Software Security and Assurance, ICSSA 2017.
Institute of Electrical and Electronics Engineers Inc., 100–103.
https://doi.org/10.1109/ICSSA.2017.8

[7] Nancy Martin and Belle Woodward. 2013. Building a Cybersecurity
Workforce with Remote Labs. , 57–62 pages. https://isedj.org/2013-
11/N2/ISEDJv11n2p57.html

[8] Marina Ribaudo and Andrea Valenza. 2019. Semi-automatic
generation of cybersecurity exercises: A preliminary proposal. In
EnSEmble 2019 - Proceedings of the 2nd ACM SIGSOFT
International Workshop on Ensemble-Based Software Engineering
for Modern Computing Platforms, co-located with ESEC/FSE 2019.
Association for Computing Machinery, Inc, New York, New York,
USA, 16–21. https://doi.org/10.1145/3340436.3342728

[9] Khaled Salah, Mohammad Hammoud, and Sherali Zeadally. 2015.
Teaching Cybersecurity Using the Cloud. IEEE Transactions on
Learning Technologies 8, 4 (Oct 2015), 383-392.
https://doi.org/10.1109/TLT.2015.2424692

[10] Christian Willems, Thomas Klingbeil, Lukas Radvilavicius, Antanas
Cenys, and Christoph Meinel. 2011. A distributed virtual laboratory
architecture for cyber-security training - IEEE Conference
Publication. https://ieeexplore.ieee.org/document/6148474

https://cisse.info/
https://github.com/copy/v86
https://seedsecuritylabs.org/
http://www.cis.syr.edu/
https://scholarworks.iupui.edu/handle/1805/15799
https://doi.org/10.1109/ICSSA.2017.8
https://isedj.org/2013-11/N2/ISEDJv11n2p57.html
https://isedj.org/2013-11/N2/ISEDJv11n2p57.html
https://doi.org/10.1145/3340436.3342728
https://doi.org/10.1109/TLT.2015.2424692
https://ieeexplore.ieee.org/document/6148474

	Leveraging Browser-Based Virtual Machines to Teach Operating System Fundamentals
	I. Introduction
	II. Challenges and Limitations of Virtualized Cybersecurity Lab Systems
	A. In-Person Labs on University-Provided Hardware
	B. Labs on Students’ Hardware
	C. Remotely Accessed via Web through Jump Boxes
	D. Cybersecurity Labs as a Service

	III. Related Works
	A. Cloud-Based Virtual Machines for Students
	B. Browser-Based JavaScript Virtual Machines
	C. Current Hands-On Cybersecurity Lab Content

	IV. System Design
	A. Logical Components of a Lab
	B. Disconnected Parameterization
	C. Repeatability

	V. Creating a Browser-based Virtual Machine
	VI. Merging Browser Based Virtual Machines and Cybersecurity Labs
	VII. Conclusion
	References

