
2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 1 www.cisse.info

DISSAV: A Dynamic, Interactive

Stack-Smashing Attack Visualization Tool

Erik Akeyson

College of Computer and Informatics

UNC Charlotte

Charlotte, North Carolina

eakeyson@uncc.edu

Harini Ramaprasad

College of Computer and Informatics

UNC Charlotte

Charlotte, North Carolina

hramapra@uncc.edu

Meera Sridhar

College of Computer and Informatics

UNC Charlotte

Charlotte, North Carolina

msridhar@uncc.edu

Abstract—This paper describes DISSAV: Dynamic

Interactive Stack Smashing Attack Visualization, a program

visualization tool for teaching stack smashing attacks. DISSAV

is a web-based application built with ReactJS. DISSAV

provides a simulated attack scenario that guides the user

through a three-part stack smashing attack. Our tool allows the

user to create a program, construct a payload for it, and

execute the program to simulate an attack scenario. We aim to

improve student learning of advanced cyber security topics,

more specifically, stack smashing attacks, by increasing

student engagement and interaction. We incorporate

previously researched techniques of Program Visualization

tools such as dynamic user input and interactive views to

achieve these goals.

Keywords—DISSAV, Dynamic, Interactive, Stack-Smashing,

Attack, Visualization, Programing Visualization, Cybersecurity,

Cybersecurity Education

I. INTRODUCTION

The global skill shortage in the cybersecurity field is well
known by business owners and experts in the field [8]. The
increasing number of daily cyber threats that companies and
governments face results in an increase in the number of
security experts desired within these entities. An estimated
three and a half million cybersecurity positions will be
unfilled in 2021 [35] due to unavailability of cybersecurity
experts. Effective cybersecurity education is essential to meet
the increasing demand for cybersecurity experts. However,
we see that educational institutions within the United States
fail to keep up with this growing need for cybersecurity talent
[5].

Control-hijacking attacks are a class of cyber attacks that
aim to take over a target machine by hijacking the
application’s flow to achieve remote or arbitrary code
execution [14, 3]. These types of attacks are quite popular
today [34, 9]. A common technique for conducting a control
hijacking attack is exploiting a buffer-overflow vulnerability
[14, 3], a vulnerability that allows an attacker to write data to
a buffer that overflows the buffer’s capacity, overwriting
adjacent memory locations [4]. Buffer overflow

vulnerabilities are known to be some of the most dangerous
vulnerabilities because they are often used for remote code
execution or privilege escalation [22, 2]. Buffer overflow
vulnerabilities have the ability to alter video streams from an
IP cameras [19], eavesdrop on conversations through desktop
conferencing IoT gadgets [30], and even start one’s Cosori
Smart Air Fryer without their knowledge [12].

A stack smashing or stack-based buffer overflow attack is
a type of buffer overflow attack that targets the call stack;
stack smashing attacks are representative of control hijacking
attacks because they both aim to take control over a system.
Buffer overflow attacks, especially stack smashing attacks,
are an important topic to teach and should be considered a
core part of the computer security curriculum at educational
institutions due to their impact and consistently high severity
rating [32]. However, teaching stack smashing is a complex
task due to the vast background information required. For
example, students have to acquire all of the following
background in order to grasp stack smashing: (i) parameter
passing in C, (ii) how parameters are stored on the stack, (iii)
C compilation using gcc, (iv) assembly code (to comprehend
assembly code instructions on the stack), (v) process memory
layout (to understand how the heap, data, and code sections
of memory work), (vi) the meaning and usage of argv (to

grasp how the program passes user input), (vii) buffer storage
(to know how character arrays are stored on the stack), (viii)
buffer overflow and how the program handles data when
unsafe functions, such as strcpy, copies a value into a buffer

that contains less memory space than the value, (ix)
overwriting a return address to comprehend how someone
can change the return address of a subroutine, (x) and
shellcode to demonstrate the dangers of stack-based buffer
overflow attacks [23].

Additionally, teaching programming is a difficult task
due to its abstraction and complexity [25] and research has
shown the C language to be particularly difficult for novice
programmers to understand [7]. Our goal is to create content
that is interactive, engaging, and guided to help address these
teaching and learning challenges.

https://cisse.info/
mailto:eakeyson@uncc.edu
mailto:hramapra@uncc.edu
mailto:msridhar@uncc.edu

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 2 www.cisse.info

Program visualization is the process of using graphics to
aid in the programming, debugging, and understanding of
computer systems [1]. Prior work suggests that program
visualization is a beneficial resource in the classroom [10, 13,
20, 15, 24, 11]. Program visualization aims to expand the
types of resources available to teachers and institutions to
enhance students’ understanding of software topics along
with encouraging active engagement. In this paper, we
present DISSAV: Dynamic Interactive Stack Smashing Attack
Visualization, a web-based, dynamic, interactive program
visualization tool for teaching stack smashing attacks.
DISSAV guides the user through a stack smashing attack
scenario construction through instructional, incremental
steps. DISSAV’s call stack visualization provides important
details such as the call stack growth direction, the layout of
an individual stack frame, and movement of data on the stack.

DISSAV’s interactive call stack and stack frame aim to
increase student engagement. The early 2000s saw a number
of influential papers [21] on the engagement of visualization
tools which proposed six categories of engagement. DISSAV
falls in the constructing category, found to be the second
highest level of engagement [33]. To the best of our
knowledge, DISSAV is the only dynamic visualization of the
stack memory that allows the user to replicate a stack
smashing attack by constructing a payload.

The main contributions of our work include the
following.

• We design and develop DISSAV, an interactive,
web-based, stack visualization tool for teaching
stack smashing attacks.

• We implement an attack scenario that allows the
user to customize vulnerable functions and payloads
through dynamic input.

Roadmap Section II provides background information
about stack smashing attacks. Section III describes the design
of DISSAV. Section IV discusses related work. Section V
presents our conclusion.

II. BACKGROUND: A STACK SMASHING ATTACK

In C programs, a call stack, also referred to as an
execution stack, is a data structure that holds information on
active functions of a program [6]. A stack frame is pushed
onto the call stack when a function is called and is popped
once the function execution has completed. Each stack frame
contains a return address to direct program execution after
the running function completes execution. In C programs,
execution starts with the main function and main’s stack
frame is the first to be pushed onto the call stack. The main
function accepts an arbitrary number of parameters provided
by the user through an array called argv, which goes into

main’s stack frame.

In a stack smashing attack, the attacker attempts to
corrupt the call stack [23] by overwriting the return address
of a stack frame to point to a place in memory where the
attacker stores their malicious code of choice [23]. The
attacker does this by locating and exploiting a buffer

overflow vulnerability in code written using unsafe
functions, e.g., strpcy to copy more data into a local buffer

than it can hold. If the value being copied into a buffer takes
up more space than the buffer can hold, the program stores
the data in adjacent memory. It is possible for an attacker to
overwrite the return address in this process because the
program stores local variables at a lower memory address
than the return address. By cleverly overwriting the local
buffer (which goes on to the call stack as part of the running
function’s stack frame) with code input through argv, the

attacker overwrites the return address of the stack frame.

For the payload (malicious input) construction, the
attacker uses three main components: (1) the NOP sled, (2)
the shell-code (the attacker-chosen malicious code), and (3)
a repeated malicious return address (the address of the
shellcode). Each of these components are described in more
detail below:

• the NOP sled: The payload starts with a series of
nop, or “no operation” assembly language
instructions, called a NOP sled. A NOP instruction
performs a null operation that simply continues
execution and is usually used to delay execution for
purposes of timing [23]. The attacker wants their
new return address to point to the beginning of the
shellcode, which executes the shellcode. The issue is
the attacker needs to know the exact address where
the shellcode begins in memory. It is very difficult to
calculate the correct return address due to stack
randomization and other runtime differences [26].
An attacker can estimate where the shellcode begins
in memory by guessing the offset of the shellcode
from the beginning of the stack, however, this is not
an efficient process and would take at best a hundred
tries, and at worst a couple of thousand [23]. To
account for this, the attacker places a long series of
NOP instructions in memory. Once program
execution lands in the NOP sled, program execution
“slides” to the beginning of the shellcode and begins
execution of the shellcode. Landing in the NOP sled
ensures complete shellcode execution. The shellcode
will most likely crash or result in a segmentation
fault if the program returns to an address anywhere
but the beginning of the shellcode.

• the shellcode: The program the attacker wishes to
execute is often referred to as shellcode because it
starts a remote shell on a machine. The program
stores the shellcode in the local variables section of
its corresponding stack frame since the program
stores the payload in a local buffer.

• repeated malicious return address: The last
component of the payload is the new return address
(the address of the payload), which is repeated
several times. Since the exact position of the return
address on the stack is also difficult to calculate,
because its value changes each time the program
compiles, the attacker repeats the new return address

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 3 www.cisse.info

in the payload to increase the chances the new return
address is correctly positioned on the stack [18].

The attacker then passes the payload as a parameter to the
program and the program stores the payload in argv. The

program stores argv as a parameter to main in its stack

frame. The strcpy function then copies the payload

contained in argv into a local variable buffer. The program

returns to the malicious return address if a correct payload is
used. The program executes the shellcode once program
execution has reached the malicious return address.

Although stack smashing attacks only affect languages
with unsafe functions, they have widespread impact due to
the large amount of legacy code used in today’s applications
[17, 37].

III. DISSAV

DISSAV is an interactive program visualization tool that
aims to teach stack smashing attacks to undergraduate
students. Our overarching goals are to engage a broader and
more diverse student body and foster student interest in the
field of cybersecurity and ultimately improve student
learning outcomes in cybersecurity topics. We aim to achieve
these goals by teaching important cybersecurity concepts
such as stack smashing attacks in an interactive and engaging
manner. DISSAV allows the user to construct a customizable
stack smashing attack scenario, guided through incremental
steps, to promote engagement and understanding. The user
can change the program and payload through dynamic input
while working with the tool. First, the user creates up to three
functions and adds them to a program named intro.c. Next,

the user can optionally construct a payload to provide as input
to the program. Lastly, the user executes the program to
interact with the call stack visualization and to complete a
successful stack smashing attack.

A. DISSAV Workflow

1) Create the Program: In this phase, the user
incrementally builds a program named intro.c by creating

one or more functions and adding them to the program. Our
Create a function phase allows the user to create a basic
function by providing a function name and optionally adding
local variables and parameters, as shown in Fig. 1. The user
can create a local variable or parameter by specifying the
name, selecting a data type from a dropdown box, and
declaring a value. DISSAV currently supports char, int, and

char[] data types.

Fig. 1. Function name, parameters, and local variables

Additionally, when creating a function, the user can 1)
add a call to an unsafe C function; 2) pass argv[1] as a

parameter; and 3) call another function that has been
previously added to the program. The first two of these
features play key roles in the stack smashing attack and the
ability to call an additional function enhances the call stack
visualization. As code is added to the function being created,
DISSAV displays the code to the left of the buttons shown in
Fig. 2.

Fig. 2. Function Display

After a function is created, a colored pointer directs the
user to add it to the program, intro.c, and DISSAV

displays the program on the right side of the screen, as shown
in Fig. 3. DISSAV dynamically updates the program code as
the user adds new (currently up to three) functions.

Fig. 3. Program Display

Our design supports the minimal functionality needed to
create a C program that can be used to construct a stack
smashing attack and allows users with even the most basic
understanding of programming to build valid C programs.
Our design allows the user to view the program code, main
function, the role of argv and function calls from the main

function, all while constructing the program.

2) Construct the Payload: After creating the program, the
user can choose to use the Construct Payload phase to create
a custom payload, by clicking a checkbox indicating that they
want to attempt a stack smashing attack. If the user chooses
not to construct a payload, DISSAV allows them to provide
simple strings such as “cat” or integers such as 15 as input to
the program instead.

If the user chooses to construct a Payload, DISSAV
displays a dynamic diagram that represents each part of the
payload in a separate color, as shown in Fig. 4. As the user

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 4 www.cisse.info

continues through each part of the payload, DISSAV
highlights the corresponding colored section with a border.

Fig. 4. Dynamic payload diagram

Our payload consists of three parts. Each part contains
hints on how to construct the corresponding section, as
shown in Fig. 5. The user begins with creating a NOP sled,
then adds the shellcode and finally ends with a repeating
return address as explained in Section II. We implement this
design to provide sectioning of the payload, which allows the
user to analyze and work on individual pieces to break down
each concept.

Fig. 5. Construct Payload

3) Execute the Program: After completing the Create

the Program phase and optionally the Construct

Payload phase, the user moves to the Execute the

Program phase. The user clicks the Start button shown in

Fig. 6 to start program execution. Once program execution
starts, DISSAV passes argv to the main function, where

argv is either the constructed payload or a simple string that

the user provides as input.

Fig. 6. Start Button

The user clicks the Next button shown in Fig. 7 to step

through the program. DISSAV pushes / pops a function each
time the user clicks the Next button and passes the user’s

input to functions that take argv as a parameter (either

directly or copied into local variables). Once the program
reaches the end of main, DISSAV displays the Finish

button shown in Fig. 8, which pops the main function and
ends program execution.

Fig. 7. Next Button

Fig. 8. Finish Button

DISSAV provides dynamic visual representations for the
call stack, stack frame, and program code during program
execution. We discuss the details of each component next.

a) Visualize Call Stack: A key aspect of DISSAV is the
Call Stack, which displays the current state of the call

stack during program execution, as shown in Fig. 9. DISSAV
pushes / pops stack frames onto the Call Stack as the user

steps through each function call. For each function that is
currently on the Call Stack, DISSAV displays a box with

the name of the function at the center and provides a
dropdown button that can be opened to view the details of the

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 5 www.cisse.info

function’s stack frame (We explain this component in
Section III-A3c). DISSAV uses a red background color for
unsafe functions and does not provide stack frame details for
the unsafe (library) functions themselves since those are not
created by the user.

Fig. 9. Call Stack

We do not intend for DISSAV’s Call Stack to be a

detailed program execution call stack similar to ones
presented in Jeliot [20], Jype [13], and ViLLE [24], which
include details such as visualization of the control flow and
object structures and a visualization for each line of code in
the program. We design DISSAV as an interactive call stack
visualization tool that only provides information relevant to
a stack smashing attack. We choose this design to provide a
simple, dynamic view that is easy for the user to comprehend.
We implement the dropdown functionality for each stack
frame to maintain a cleaner look and avoid overwhelming the
user with all the details at the same time. DISSAV allows the
user to return to the Create the Program phase at any time, to
make changes to their functions and see how the changes
impact the Call Stack.

b) Visualize Program Code: DISSAV highlights the
corresponding program line for each movement of a stack
frame, as shown in Fig. 10. DISSAV highlights the function’s
name and parameters when the function is pushed onto the
stack and highlights only the name of the function when
popping the function off the stack.

Fig. 10. Calling strcpy

The parameter argv plays an essential role in stack

smashing attacks. DISSAV uses a dark blue font color to
represent the argv parameter, as shown in Fig. 11. DISSAV

shows argv starting as a parameter in the main function,

moving as a parameter to a function called from the main
function, then finally being passed to strcpy. The different

font colors and highlights help the user make a connection
between the program execution, the movement of the stack
and the movement of argv.

Fig. 11. Following argv

c) View Stack Frame: DISSAV provides a detailed stack
frame display, which contains the parameters, return address,
saved frame pointer, and local variables, all with their
corresponding memory addresses, for each stack frame that
is open (i.e., for which the user clicks on the dropdown
button), as shown in Fig. 12. DISSAV displays a label next
to each section of the stack frame (e.g. Parameters), to
describe the data within the section. DISSAV updates the
stack frame dynamically if the user passes input to the
corresponding function. We choose this design to provide a
simple representation of the stack frame that is easy to
understand and track data in. The view assists the user in
understanding how data is pushed and moved within the
stack frame.

Fig. 12. Stack Frame

d) Complete a Stack Smashing Attack: DISSAV allows
the user to attempt to complete a stack smashing attack. The
user does so by creating a function that contains a buffer
overflow vulnerability, constructing a payload that attempts
to exploit the vulnerability, and then executing the program
with the payload. An attack is successful if a correct payload

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 6 www.cisse.info

is constructed. The user’s goal is to overwrite the return
address to an address that falls within the NOP sled of the
payload. The stack frame display assists the user in choosing
a correct return address and calculating the length of the
payload. The set of correct return addresses varies based on
the current state of the call stack, the parameters, and local
variables. DISSAV tracks all functions where a successful
attack has taken place and displays them along with an attack
status for feedback, as shown in Fig. 13.

Fig. 13. Attack Status

B. DISSAV Highlights and Limitations

1) Engagement in Program Visualization: The early
2000s saw a great interest in the research of engaging the
learner in an active way with software visualization tools.
Many influential papers [21] define six categories of
engagement: No viewing, viewing, responding, changing,
constructing, and presenting. DISSAV provides engagement
in the constructing category, allowing the user to not only
provide dynamic input, but to construct and then see a visual
representation of their own code. Researchers have found
constructing to be more engaging than changing [33]. We
aim to implement responding and presenting in future work
to increase student engagement.

Fig. 14. Landing Page

2) Ease of Use: DISSAV is an interactive web-based
application built using React JS for the user interface or front-
end. It is easily accessible via a weblink and has been tested
on the most commonly used browsers, Chrome, Safari and
Firefox. It requires no prior knowledge of C and minimal
programming experience. DISSAV brings the user to a
simple landing page (shown in Fig. 14) where they are able
to click on the Begin button. The user is guided through the

DISSAV workflow by the numbered markers shown in Fig.
15. Most of the markers are simply buttons that the user
clicks to go to the next stage and require no inference.

Markers one (Create a function), and four (Construct

Payload) require the user to infer some knowledge. The user

can always return to the first section for code modifications.

Fig. 15. Instructional Steps

3) Limitations: DISSAV supports a limited version of a C
program that only features representative aspects to allow a
simple stack smashing attack. A function may only contain
parameters, local variables, a single strcpy function call,

and calls to other functions within the program; no other
program statements are supported. Parameter and local
variable data types are limited to char, int, and char[].

During program execution, the Next button, the Call

Stack and program highlights correlate to each function call

and not to each line of code. Finally, since DISSAV is a web-
based application, only users with access to a computer with
internet connection can use DISSAV.

IV. RELATED WORKS

A. Program Visualization for Program Execution

Program visualization is a sub category of software
visualization and has been used and researched for decades.
Many of these tools aim to improve the education of
programming and computing topics to novice programmers.
Prior visualization tools [7, 10, 13, 24, 20, 28, 15] provide
visual representation of program execution by providing
details such as data types, stack frame information, memory,
general program flow [16] and source code representation
[31]. The effects of these tools are well studied [24, 16] and
have been shown to be a beneficial resource in the classroom.

B. Visualization for Buffer Overflow Attack

Many buffer overflow visualization tools have been
developed and deployed to assist in the education of secure
programming.

https://cisse.info/

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 7 www.cisse.info

Sasano [27] proposes a visualization tool for detecting
when a program overwrites a return address by a buffer
overflow attack. The tool provides a gdb visual of the call
stack during the execution of a given C program, to assist
novice developers in detecting whether a function contains a
buffer overflow vulnerability. The user requires background
knowledge of memory and gdb to use and understand the
outputs of certain commands. The main focus of Sasano’s
tool is to check if a function contains a buffer overflow
vulnerability while DISSAV aims to simulate an attack
scenario. Sasano’s tool requires background knowledge of
gdb, while DISSAV does not.

Zhang [38] et al. proposes an interactive visualization to
teach buffer overflow concepts. This tool displays a segment
of memory for the user to learn how a buffer stores memory
along with how a program overwrites memory. This tool
lacks an interactive call stack representation, which is a key
focus of DISSAV.

Walker [36] et al. designs a tool to visualize the process
address space for teaching secure C programming. Unlike
DISSAV, SecureCVisual does not allow the user to conduct
a stack smashing attack by using a payload.

Most closely related to our work is the Simple Machine
Simulator (SMS) [29], which gives a dynamic visual
representation of the stack during program execution. SMS
allows the user to step through a C program while viewing
the stack and applies rigid rules for mapping source code to
memory. The final exercise allows users to overwrite a return
address in an attempt to execute code at a different spot in
memory. The instructor predefines the SMS programs and
they cannot be changed by the users during the lab, unlike
DISSAV which is highly customizable, allowing users to
modify the program and the payload during the lab.

In Table I, we compare and contrast DISSAV with the
buffer overflow attack visualization tools discussed above,
highlighting the main functionalities provided by each tool.
To the best of our knowledge, DISSAV is currently the only
tool that provides stack visualization, dynamic payload,
attack scenario construction, and code visualization.

TABLE I. COMPARISON OF VISUALIZATIONS
FOR BUFFER OVERFLOW ATTACKS

 DISSAV Zhang Walker SMS Sasano

Stack

Visualization

Yes No Yes Yes Yes

Dynamic

Payload
Yes Yes No No No

Attack

Scenario

Yes Yes No Yes No

Code

Visualization
Yes No Yes Yes Yes

V. CONCLUSION AND FUTURE WORK

In this paper we present DISSAV — a web-based,
dynamic, interactive program visualization tool to teach stack
smashing attacks. DISSAV allows the user to create a
program, construct a payload, and execute the program to
attempt a simulated stack smashing attack. DISSAV is
designed to be easy to access and use even for novice
programmers. Our overall aim is to improve student learning
and engagement in advanced cybersecurity topics such as
stack smashing attacks, as part of an effort to foster a broader
and more diverse student body in cybersecurity. In Fall 2021,
we plan to deploy DISSAV into a software security module
of an introductory computer security course.

ACKNOWLEDGEMENT

This research was supported by NSF award NSF-DGE #
1947295.

REFERENCES

[1] Brad A.Myers. “Taxonomies of visual programming and program
visualization”. In: Journal of Visual Languages and Computing 1.1
(1990), pp. 97–123.

[2] James C. Foster Vitaly Osipov Nish Bhalla Niels Heinen Dave Aitel.
Buffer Overflow Attacks. Elsevier Inc, 2005. ISBN: 978-1-932266-
67-2.

[3] LI-HAN CHEN et al. “A Robust Kernel-Based Solution to Control-
Hijacking Buffer Overflow Attacks”. In: Journal of Information
Science and Engineering 27.3 (2011), pp. 869–890.

[4] Cloudflare. What is buffer overflow? URL:
https://www.cloudflare.com/learning/security/threats/buffer-
overflow/. (accessed: 07.01.2021).

[5] William Crumpler and James Andrew Lewis. The Cybersecurity
Workforce Gap. URL: https://www.csis.org/analysis/cybersecurity-
workforce-gap. (accessed: 04.27.2021).

[6] DBpedia. About: Call Stack. URL:
https://dbpedia.org/page/Call_stack. (accessed: 06.07.2021).

[7] Matthew Heinsen Egan and Chris McDonald. “Program
visualization and explanation for novice C programmers”. In:
Proceedings of the Sixteenth Australasian Computing Education
Conference 148 (2014), pp. 51– 57.

[8] Steven Furnell. “The cybersecurity workforce and skills”. In:
Computers & Security 100 (2021).

[9] Sergiu Gatlan. Foxit Reader bug lets attackers run malicious code
via PDFs. URL: https://threatpost.com/pulse-secure-vpns-critical-
rce/166437/. (accessed: 06.04.2021).

[10] Philip J. Guo. “Online python tutor: embeddable web-based program
visualization for cs education”. In: Proceeding of the 44th ACM
technical symposium on Computer science education (2013), pp.
579–584.

[11] Steven Halim et al. “Learning Algorithms with Unified and
Interactive Web-Based Visualization”. In: Olympiads in Informatics
6 (2012), pp. 53–68.

[12] Abeerah Hashim. Vulnerabilities In Cosori Smart Air Fryer Could
Allow Remote Code Execution Attacks. URL:
https://latesthackingnews.com/2021/04/27/vulnerabilities-in-cosori-
smart-air-fryer-could-allow-remote-code-execution-attacks/.
(accessed: 07.15.2021).

[13] Juha Helminen and Lauri Malmi. “Jype – A Program Visualization
and Programming Exercise Tool for Python”. In: Proceedings of the
5th international symposium on Software visualization (2010), pp.
153–162.

[14] Catalin Hritcu. Control Hijacking Attacks. URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.7294
&rep=rep1&type=pdf. (accessed: 06.06.2021).

https://cisse.info/
https://www.cloudflare.com/learning/security/threats/buffer-overflow/
https://www.cloudflare.com/learning/security/threats/buffer-overflow/
https://www.csis.org/analysis/cybersecurity-workforce-gap
https://www.csis.org/analysis/cybersecurity-workforce-gap
https://dbpedia.org/page/Call_stack
https://threatpost.com/pulse-secure-vpns-critical-rce/166437/
https://threatpost.com/pulse-secure-vpns-critical-rce/166437/
https://latesthackingnews.com/2021/04/27/vulnerabilities-in-cosori-smart-air-fryer-could-allow-remote-code-execution-attacks/
https://latesthackingnews.com/2021/04/27/vulnerabilities-in-cosori-smart-air-fryer-could-allow-remote-code-execution-attacks/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.7294&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.7294&rep=rep1&type=pdf

2022 Journal of The Colloquium for Information Systems Security Education, Volume 9, No. 1, Winter 2022

979-8-4168-8166-5/22/$26.00 ©2022 CISSE 8 www.cisse.info

[15] James H. Cross II, Dean Hendrix, and David A. Umphresss.
“jGRASP: An Integrated Development Environment with
Visualizations for Teaching Java in CS1, CS2, and Beyond”. In:
Journal of Computing Sciences in Colleges 23.2 (2007), pp. 170–
172.

[16] Oscar Karnalim and Mewati Ayub. “The Effectiveness of a Program
Visualization Tool on Introductory Programming: A Case Study
with PythonTutor”. In: CommIT (Communication and Information
Technology) Journal 11.2 (2017), pp. 67–76.

[17] Mehak Khurana, Ruby Yadav, and Meena Kumari. “Buffer
Overflow and SQL Injection: To Remotely Attack and Access
Information”. In: (2018), pp. 301–313.

[18] Lesson 8: Buffer Overflow Attack. URL:
https://www.usna.edu/ECE/ec312/Lessons/host/EC312_Lesson_8_B
uffer_Overflow_Attack_Course_Notes.pdf. (accessed: 07.15.2021).

[19] John Leyden. Research exposes vulnerabilities in IP camera
firmware used by multiple vendors. URL:
https://portswigger.net/daily-swig/research-exposes-vulnerabilities-
in-ip-camera-firmware-used-by-multiple-vendors. (accessed:
07.13.2021).

[20] Andres Moreno et al. “Visualizing programs with Jeliot 3”. In:
Proceedings of the working conference on Advanced visual
interfaces (2004), pp. 373–376.

[21] Thomas L Naps et al. “Evaluating the educational impact of
visualization”. In: Working group reports from ITiCSE on
Innovation and technology in computer science education (2003),
pp. 124–136.

[22] Stefan Niculaa and Razvan Daniel Zotaa. “Exploiting stack-based
buffer overflow using modern day techniques”. In: Procedia
Computer Science 160 (2019), pp. 9–14.

[23] Aleph One. Smashing The Stack For Fun And Profit. URL:
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pd
f. (accessed: 05.15.2021).

[24] Teemu Rajala et al. “Effectiveness of Program Visualization: A Case
Study with the ViLLE Tool”. In: Journal of Information Technology
Education 7 (2008), pp. 15–32.

[25] Anthony Robins, Janet Rountree, and Nathan Rountree. “Learning
and Teaching Programming: A Review and Discussion”. In:
Computer Science Education 13.2 (2003), pp. 137–172.

[26] Rodrigo. How does a NOP sled work? URL:
https://stackoverflow.com/questions/14760587/how-does-a-nop-
sled-work. (accessed: 07.15.2021).

[27] Isao Sasano. “A Tool for Visualizing Buffer Overflow with
Detecting Return Address Overwriting”. In: EAI Endorsed
Transactions on Self-Adaptive Systems 2.5 (2016).

[28] Maya Satratzemi, Vassilios Dagdilelis, and Georgios Evagelidis. “A
system for program visualization and problem-solving path
assessment of novice programmers”. In: ACM SIGCSE Bulletin 33.3
(2001), pp. 137– 140.

[29] Dino Schweitzer and Jeff Boleng. “A Simple Machine Simulator for
Teaching Stack Frames”. In: Proceedings of the 41st ACM technical
symposium on Computer science education (2010), pp. 361–365.

[30] Tara Seals. STEM Audio Table Rife with Business-Threatening Bugs.
URL: https://threatpost.com/stem-audio-table-business-
bugs/166798/. (accessed: 07.15.2021).

[31] Lisan Sulistiani and Oscar Karnalim. “An Embedding Technique for
Language-Independent Lecturer-Oriented Program Visualization
Tool”. In: EMITTER International Journal of Engineering
Technology 6.1 (2017).

[32] Blair Taylor and Shiva Azadegan. “Threading secure coding
principles and risk analysis into the undergraduate computer science
and information systems curriculum”. In: Proceedings of the 3rd
Annual Conference on Information Security Curriculum
Development (2006), pp. 24–29.

[33] Jaime Urquiza-Fuentes and J. Angel Velazquez-Iturbide. “A Survey
of Successful Evaluations of Program Visualization and Algorithm

Animation Systems”. In: Transactions on Computing Education 9.2
(2009), pp. 1–21.

[34] Lisa Vaas. Pulse Secure VPNs Get Quick Fix for Critical RCE.
URL: https://threatpost.com/pulse-secure-vpns-critical-rce/166437/.
(accessed: 06.08.2021).

[35] Cybersecurity Ventures. Cybersecurity Jobs Report 2018-2021
Edition. URL: https://www.herjavecgroup.com/wp-
content/uploads/2018/11/HG-and-CV-Cybersecurity-Jobs-Report-
2018.pdf. (accessed: 04.06.2021).

[36] James Walker et al. “A System for Visualizing the Process Address
Space in the Context of Teaching Secure Coding in C”. In:
Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (2020), pp. 1033–1039.

[37] Jun Xu et al. “Architecture Support for Defending Against Buffer
Overflow Attacks”. In: (2002).

[38] Jinghua Zhang et al. “Developing and Assessing a Web-Based
Interactive Visualization Tool to Teach Buffer Overflow Concepts”.
In: IEEE Frontiers in Education Conference (2020), pp. 1–7.

https://cisse.info/
https://www.usna.edu/ECE/ec312/Lessons/host/EC312_Lesson_8_Buffer_Overflow_Attack_Course_Notes.pdf
https://www.usna.edu/ECE/ec312/Lessons/host/EC312_Lesson_8_Buffer_Overflow_Attack_Course_Notes.pdf
https://portswigger.net/daily-swig/research-exposes-vulnerabilities-in-ip-camera-firmware-used-by-multiple-vendors
https://portswigger.net/daily-swig/research-exposes-vulnerabilities-in-ip-camera-firmware-used-by-multiple-vendors
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://stackoverflow.com/questions/14760587/how-does-a-nop-sled-work
https://stackoverflow.com/questions/14760587/how-does-a-nop-sled-work
https://threatpost.com/stem-audio-table-business-bugs/166798/
https://threatpost.com/stem-audio-table-business-bugs/166798/
https://threatpost.com/pulse-secure-vpns-critical-rce/166437/
https://www.herjavecgroup.com/wp-content/uploads/2018/11/HG-and-CV-Cybersecurity-Jobs-Report-2018.pdf
https://www.herjavecgroup.com/wp-content/uploads/2018/11/HG-and-CV-Cybersecurity-Jobs-Report-2018.pdf
https://www.herjavecgroup.com/wp-content/uploads/2018/11/HG-and-CV-Cybersecurity-Jobs-Report-2018.pdf

	DISSAV: A Dynamic, Interactive Stack-Smashing Attack Visualization Tool
	I. Introduction
	II. Background: A Stack Smashing Attack
	III. DISSAV
	A. DISSAV Workflow
	B. DISSAV Highlights and Limitations

	IV. Related Works
	A. Program Visualization for Program Execution
	B. Visualization for Buffer Overflow Attack

	V. Conclusion and Future Work
	Acknowledgement
	References

