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Abstract—The design of a gamified instructional paradigm 
requires careful identification of concepts, concept 
dependencies, and concept flow in order to achieve maximum 
student proficiency, in a subject matter, while maintaining 
engagement. This is especially true for difficult and counter-
intuitive fields such as quantum cryptography. In this paper, 
we present an abstraction of concepts that are needed to learn 
quantum key distribution in a gamified environment. This is 
coupled with a powerful adaptive navigation algorithm that 
guides students from one exercise to the next in the game such 
that maximum proficiency is achieved in various concepts 
associated with each exercise. The student traverses through 
different lessons in the game achieving the lesson outcomes in 
an efficient manner. This represents the first of its kind 
abstraction of quantum cryptography concepts and a 
navigation algorithm for a gamified paradigm. 

Keywords—serious games, engagement, exercise schedules, 
quantum cryptography 

I. INTRODUCTION 
In recent years gamification has become a trend covering 

a broad spectrum of multidisciplinary fields such as 
education, healthcare, defense, corporate training and 
advertising [1, 2]. Serious games have many definitions, the 
popular gist being games with a learning element along with 
an entertainment element [1, 2, 3]. [2] lists the advantages of 
serious games in various fields such as dance-pad for 
improving physical fitness through games, games for the 
purpose of rehabilitation, training games in corporate 
industry to minimize the teaching or the equipment costs and 
in education for improving logical thinking and so on. One 
of the challenging aspects of serious games is maintaining the 
player engagement, during the game, that might impact the 
learning outcomes [4][8-10, 21]. One of the factors that might 
affect the engagement is the cognitive load or application of 
knowledge. This is often related to design of exercises within 
the game and the distribution of relevant concepts, to be 
learnt, over these exercises [18, 19]. Failure to properly 
design the game may lead to lower engagement scores and 
lead to students spending long periods of time in navigational 
issues going from one exercise to the next. Navigational hints 
are a way of improving learning of player in the games also 
help in maintaining engagement [6] [7]. There are many ways 
to measure engagement of players in serious games 
depending on the game goals and various aspects inside the 
game [5].  

Enhancing player learning abilities in serious games has 
become an area of research. In [11], authors try to enhance 
the learning ability of the players by implementing a 
pedagogical agent along with video tutorials in the game. 
These agents act as interactive assistants during the game 
play directing the player by providing necessary support 
through hints. [12] provides a design strategy for 
incorporating hints into the games where players leave the 
self-explanatory hints for the future players. [13] provides 
how serious games help in design and planning of a project 
to avoid accidents at workplace using a safedesign game.  

An important feature of serious games is to adaptively 
improve the player performance [14]. The authors in [14] 
developed a virtual reality game to teach social engineering 
which assesses the player’s performance by providing hints 
adaptively. Another way of adaptively improving the 
efficiency of the player is that prior game data is analyzed 
and hints are provided based on the current player 
performance [15] as well as update the assessments in the 
game dynamically. The authors used Bayesian network 
which is fed with the players game data, according to the data 
hints or feedback is provided in the help panel. 

Quantum computing and cryptography is a growing field 
but remains inaccessible to a vast swath of student population 
because of the lack of courses at Universities and the lack of 
opportunities for hands-on training and experience. Given 
that this is a demanding field at the intersection of several 
disciplines such as computer science, Physics, mathematics 
and cybersecurity, it is difficult to maintain student interest, 
engagement and retention. One of the major challenges faced 
by educators, in this field, is the determination of appropriate 
breakdown of concepts and lessons and the flow between 
these concepts and lessons that must be followed for students, 
particularly, in a cybersecurity program. Multiple textbooks 
exist but most are written for students with strong Math, and 
Physics backgrounds. Furthermore, the flow that works in a 
textbook and traditional classroom setting does not 
necessarily translate to a gaming environment designed for 
teaching. This paper bridges this gap and presents a possible 
breakdown of concepts and lessons that may be used to 
develop a gaming environment for teaching quantum 
cryptography to cybersecurity students. Furthermore, we also 
present a navigation algorithm that can be used to direct a 
student between these concepts and lessons in order to gain 
proficiency in the subject. This flow was implemented and 
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tested in an immersive gamified educational environment 
called QuaSim [11, 16, 17, 25, 26]. 

In a previous paper [7], the authors presented preliminary 
results on this concept flow graph. The previous results 
measured learning and engagement potential of the players in 
QuaSim using the knowledge concepts associated with the 
game and the player history. The paper attempted to improve 
the engagement and learning potential of the player by 
providing navigation hints thereby avoiding distractions to 
the player. [7] also introduced the concepts of hints in three 
different modes – manual, semi-automatic and automatic 
hints. In [7] QuaSim provided hints for the next exercise 
assuming the concepts that lead to learning goal in the game 
are independent of each other. In other words, we assumed 
that it is not required for the player to solve an exercise prior 
to solving another exercise. Each exercise has a value 
associated with it which determines the possibility of 
suggesting it as a next exercise to the player with reference 
to engagement potential. Exercises with new concepts (not 
yet encountered/solved by the player) in the current game 
session are given higher values and thus represent a higher 
engagement potential. Such exercises are suggested to the 
player iteratively. While, simultaneously learning potential is 
measured with respect to number of attempts the player takes 
before solving the exercise correctly. This paper, in part, 
presents further refinement of our previous results. In 
particular, we note that more often than not the concepts used 
and learned in one exercise depend on those in other 
exercises which may be deemed as pre-requisites by 
educators. In such cases, the next exercise maximizing the 
value metric must be chosen while taking these dependencies 
into account. This paper presents a novel algorithm that takes 
these dependencies into account while navigating through a 
landscape of concepts and lessons that are dependent on one 
another. 

The paper structure is as follows: Section II discusses the 
guiding principles followed in identification of concepts and 
the abstract design of the game for quantum cryptography, 
Section III discusses our dynamic navigation procedure for 
traversing a concept graph for quantum cryptography, 
Section IV presents an overview of our game QuaSim and 
our updated navigation procedure with dependencies, 
Section V brings all the finer details together into a higher 
level view describing the various lesson dependencies in the 
game and Section VI concludes the paper. 

II. A SYSTEMIC APPROACH TO 
TEACHING QUANTUM CRYPTOGRAPHY 

We distilled and identified the necessary concepts from 
quantum cryptography that a cybersecurity student needs to 
learn and internalize in order to understand the field. In doing 
so we employed a five-part model, called the Vowel Model, 
to develop the lesson plans [17]. This model helps to create 
learning efficiency and depth of content. The Vowel model 
consists of five instructional elements as described below: 

A – Asking: In this first phase, the students can ask and get 
asked questions that are fundamental to completing a specific 

task, such as creating a quantum bit. This dialog phase allows 
for the creation of a testable hypotheses with a gaming 
environment for a cybersecurity student. 

E – Exploring: The student is allowed to explore an 
immersive gaming environment and consult the oracle in the 
game to gain information about the challenge to be 
completed. This allows for the student to freely learn the 
content of a lesson before a formally structured instruction is 
delivered. This allows for the student to gain experience 
through trial and error and trying out different gaming 
elements. 

I – Instruction: This allows for a formal instructional setting 
where the student in exposed to necessary concepts and ideas 
and completion of notational and symbolic exercises. This 
allows for the integration of important topics and 
demonstrate examples within the context of cybersecurity. 

O – Organizing: This phase can be understood as a guided 
practice phase where the student actively engages with the 
game, completing gaming activities and exercises. The 
student often loops back to the Asking phase thereby 
addressing some of the early questions now based on formal 
instruction. 

U – Understanding: This allows for the instructor to measure 
student progress in the game and proficiency in different 
concepts as the student attempts more and more exercises and 
proceeds through different lessons (levels) within the game. 

A. Concepts, Exercises, and Schedules 
Quantum cryptography involves an interplay of concepts 

from different inter-disciplinary domains including physics, 
mathematics, and computer security with subtle 
dependencies. A systematic approach including the 
organization of concepts, design of related exercises and a 
navigation approach enabling students to achieve proficiency 
in a stepwise fashion is crucial for effective instruction in this 
area. Such an approach can be adapted for several instruction 
modes including classroom lectures, educational games, and 
game-based teaching.  

Informally we define a quantum cryptography concept 
(qcc) to be an indivisible unit of knowledge with a clearly 
stated learning objective(s) that are achievable by performing 
exercises and the learning progress (proficiency) can be 
assessed objectively. 𝐴 qcc 𝐶 is said to depend on qcc 𝐷 if in 
order to achieve proficiency in 𝐶 it is necessary to achieve 
proficiency in the concept 𝐷. A concept depends on a group 
of concepts if achieving proficiency in each member of the 
group is required to achieve proficiency on that concept. 
Quantum cryptography game unit consists of a set of qccs, 
𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}  along with a set of exercises 𝐸 =
{𝑒1, 𝑒2, … , 𝑒𝑛} that are designed to achieve proficiency over 
all the qccs in 𝐶. Achieving proficiency in all the qccs of 𝐶 
will result in meeting the learning objectives of the related 
unit. Each exercise in 𝐸 is associated with one or more qccs 
from 𝐶 . Relevancy of concepts to exercises is given by a 
tuple 𝑅(𝑒𝑖) which gives all the concepts that are hosted by an 
exercise 𝑒𝑖. Also, 𝐸(𝑐𝑗) gives the set of exercises which host 
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a concept 𝑐𝑗 . Note that each exercise can involve multiple 
concepts and a concept can be associated with multiple 
exercises. However, for any two concepts 𝑐𝑗  and 𝑐𝑘  and 
exercise 𝑒𝑖, if the two concepts belong to 𝑅(𝑒𝑖) then 𝑐𝑗 and 
𝑐𝑘 must be independent of each other. Similarly, the sets of 
exercises hosting two dependent concepts must be disjoint. 
To measure the concept proficiency, each concept 𝑐𝑗  is 
assigned a numeric value of 1 if the player successfully 
solves an exercise where the concept 𝑐𝑗  resides else it is 
assigned with 0. The learning goal is measured as game unit 
proficiency 𝑃(𝐶) which is the Boolean tuple of concept 
proficiencies in all the concepts in 𝐶 initially assigned with a 
value 0 for each concept. Hence, the player is said to achieve 
the learning goal if all the values in the tuple are 1. 

The dependency among concepts introduces a 
dependency among the related exercises (see next 
subsection) and the order in which these exercises can be 
scheduled for a learner in a gaming session. For instance, if 
any qcc hosted by exercise 𝑒𝑗 depends on that hosted by 𝑒𝑖 
then exercise 𝑒𝑖  must be scheduled before exercise 𝑒𝑗 . 
Several schedules of exercises are possible for a quantum 
cryptography game unit involving multiple concepts and 
multiple exercises. In order to achieve learning objectives in 
a robust manner devising schedules that can be completed 
with reasonable effort is crucial. Given potential variability 
in the learning styles and the uneven learning rates of 
learners, a navigation algorithm is described below to 
dynamically adapt schedules for individual learners. 

III. ADAPTIVE DYNAMIC NAVIGATION PROCEDURE 
The navigation algorithm helps the player to navigate 

through the exercise space while maintaining engagement, 
and frustration is minimized. The next exercise is proposed 
to the learner based on a numerical value calculated for each 
exercise in the game unit. This is an iterative algorithm where 
the value of each exercise is calculated at every iteration. The 
value is calculated using, 

𝑣𝑖 =  〈
1

|𝐸(𝑐𝑗)|
, 𝑐𝑗 ∈ 𝑅(𝑒𝑖)〉 

 
The value of each exercise is a tuple of values for each 

concept giving number of exercises the concept is relevant 
in. This value shows how essential is it to solve that exercise 
with respect to the concept and available exercises that cover 
the concept. The concept relevancy in all other exercises is 
updated with all the concepts that player has achieved 
proficiency in by setting the value to 0 as that concept is no 
more relevant to that exercise being achieved proficiency 
already. Also, the scenario proficiency is updated by 
assigning value 1 to the concepts where player achieved 
proficiency thereby tracking how far the player is from 
achieving the learning goal. 

The above simple iterative procedure is sufficient to 
create customized dynamic schedule of exercises if there are 
no dependencies among the concepts in the schedule. When 

there exists dependency among the concepts, then an exercise 
involving a concept can be scheduled only after the learner 
has completed at least one exercise involving each of the 
concepts on which the original concept depends upon. A 
concept graph is a directed graph which represents relation 
between the concepts. There exists an edge from 𝑐1−>  𝑐2 
if concept 𝑐2  is dependent on 𝑐1 . Using the concept graph 
and the set of tuples 𝑅(𝑒)  relevant concepts for each 
exercise, an exercise graph is derived which is a directed 
graph. There exists an edge from 𝑒1−>  𝑒2 if at least one 
concept in 𝑅(𝑒2) depends on at least one concept in 𝑅(𝑒1). 

To select the next best exercise to the player taking into 
consideration the dependency among the concepts, edge 
weights are used. The value of each exercise (node value) is 
calculated using (1). The edge weight is calculated using the 
notion of dependency overlap and the node value. A 
dependency overlap from exercise 𝑒𝑖 to 𝑒𝑗, 𝑑(𝑒𝑖 , 𝑒𝑗) is 

𝑑(𝑒𝑖 , 𝑒𝑗)  =  𝑁𝑗𝑖  –  𝛿 ∗  𝑁𝑅𝑗𝑖 
 
𝑁𝑗𝑖 = number of concepts in 𝑒𝑗 depending on a concept of 𝑒𝑖 

𝑁𝑅𝑗𝑖 = number of concepts common between 𝑒𝑗 and 𝑒𝑖 

𝛿 = redundancy factor. 

The dependency overlap 𝑑(𝑒𝑖 , 𝑒𝑗) allows us to pick the 
next exercise node 𝑒𝑗 such that maximum number of required 
dependencies among the concepts in 𝑒𝑗  are met while 
minimizing the repetitive learning of concepts across the 
exercises 𝑒𝑖  and 𝑒𝑗 . For example, suppose  R(𝑒𝑖)  =
 {a, b, c, d}, R(𝑒𝑖)  =  {e, f, c, d} , R(𝑒𝑘)  =  {e, f, c, h} , 
R(𝑒𝑘)  =  {e, f, c, h}, then exercise 𝑒𝑘 is preferred over 𝑒𝑖 as 
the next exercise after 𝑒𝑖  since it reduces the number of 
repetitive concepts (from 2 to 1) while meeting the same 
number of dependencies as 𝑒𝑖 . To schedule exercises in 
increasing order of complexity while providing opportunities 
to learn new concepts in each exercise (freshness), we further 
refine edge weight to from node 𝑒𝑖 to 𝑒𝑗 as follows. 

𝑊𝑒𝑖
−> 𝑊𝑒𝑗

 = (
𝑑(𝑒𝑖,𝑒𝑗) 

|𝑅𝑒𝑗
| 

∗  𝑣𝑒𝑗
) 

 
Then, the next exercise is chosen based on maximal edge 
weight: 

Next exercise (𝑒𝑗) =  Max {𝑊𝑒𝑖−> 𝑊𝑒𝑗  | 𝑒𝑗}  
is adjacent to 𝑒𝑖} 

 
Note that the parameter 𝛿  proportionately reduces the 
redundancy among non-dependent concepts. For example, if 
there are 200 concepts and 199 concepts are redundant 
between nodes 𝑒𝑖 , 𝑒𝑗  then the dependency overlap if 𝛿  is 
1 – ( 0.01 ∗  199)  =  −0.99, which reduces the node value 
excessively that the significance of the node carrying 1 
dependent concept is lost. Hence, 𝛿 should be chosen in a 
way that preserves the significance of the node while reduces 

(2) 

(1) 

(4) 

(5) 
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the priority compared to other nodes with fewer redundant 
nodes. Given 𝑁  concepts, the parameter can be set as 
follows: 

𝛿 =  10− ceil(log(𝑁))   
 

The main steps of the dynamic schedule generation 
procedure is as follows. Initially, the source nodes (exercise 
with no dependent concepts) are queued. Once an exercise is 
successfully completed, edge weights of the nodes adjacent 
to the current node are calculated and updated into a weight 
matrix and the node with maximum weight is queued to the 
player as the next best exercise. The progress vector is 
updated, and the values of the exercises are recalculated 
using (1) and the process is repeated until all components of 
the progress vector are 1 or there are no exercises left that 
cover the remaining concepts. We use two queues named 
visited queue (V) that queues the exercises for the player, 
processed queue (P) which queues the nodes successfully 
solved by the player in order to explore further for the next 
exercises. Below, a node represents an exercise in the 
exercise graph. 

1. Enqueue the base nodes into V. Base nodes are nodes that 
do not have any dependencies. 

2. Dequeue each node, provide to the player for solving. and 
enqueue this node into P. 

3. Repeat the process until V is empty. 

4. After all the base nodes are processed, calculate all the 
node weights (1) using nhints (navigation hints 
algorithm) 

5. Dequeue node from P say 𝐷𝑝 and calculate edge weights 
(4) for all the nodes adjacent to 𝐷𝑝 using edge weight. 

6. Pick the child node with maximum edge weight and 
enqueue to V. 

7. Dequeue the node 𝐷𝑣 and provide it to player for solving. 

8. If the player successfully solves and exercise (node) then 
enqueue the node 𝐷𝑣 in to P 

a. Else re-calculate the node weights of all the 
nodes and the edge weights of 𝐷𝑝. 

b. Pick the node with maximum value and 
enqueue to V. 

9. Remove node 𝐷𝑝 from the exercise graph. 

10. Calculate the node weights, if weight = 0, remove the 
node from the exercise graph. 

11. Repeat from step 5. 

12. If no child nodes exist for the current node 𝐷𝑝  and all 
concepts are not learnt, go to step 1. 

13. Repeat steps 1 - 10 until there are no exercises left or all 
the concepts are learnt. 

IV. QUASIM 
In this section we introduce the QuaSim serious game, its 

navigation hint system and the novel extended concept 
dependency handling mechanism. QuaSim is a virtual 
gamified education paradigm that teaches basic concepts of 
quantum computing and cryptography. The goals of QuaSim 
are three fold. First, it allows the internalization of 
counterintuitive quantum concepts that sit at the intersection 
of Physics, mathematics, computer science and cybersecurity 
[22, 23, 24]. Second, it provides a immersive environment for 
hands-on learning in the absence of expensive quantum 
equipment and field-training opportunities. And third, 
QuaSim enhances student learning and proficiency in 
relevant concepts while maintaining engagement through a 
gamified interface.  

Figure 1 shows screenshots of the game. There are four 
major lessons in the game namely polarization, basis and 
measurement, quantum communication, and BB84 quantum 
key exchange. There are several sub-lessons such as matrix 
and Dirac notations, linear combination, quantum 
communication, channel noise detection, eve detection, etc. 

 

 
Fig. 1. Screen shots from QuaSim game showing lessons 2 measurement 

(top) and 3 quantum communication (bottom) 

(6) 
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QuaSim has been developed in Unreal Engine 4. The 
game includes several features to support student gameplay 
such as a narrator (including a mission statement), an oracle 
(when students want to seek help or the system detects a 
student needs help), several hint mechanisms, embedded 
videos and quizzes throughout the game, a web browser, 
calculator, various controls to fine-tune the environment and 
finally and most-importantly support for multiplayer 
scenarios for up to three players. All events and actions 
performed by the player are recorded in the game including 
the solutions of the player and their attempts to solve each 
exercise. This is used to analyze student performance and 
need for intervention (through the oracle) on the fly. The 
game is played in three versions categorized based on the hint 
mode namely manual, semi-automatic, and the automatic 
mode. Manual mode enables players to access hints 
manually, in semi-automatic mode hints are provided to the 
player with an option for the player to reject or accept the hint 
whereas in the automatic hint mode hints are displayed to the 
user without an option to reject. Hints of two different types 
– solution hints and navigation hints called shints and nhints, 
respectively. 

A. A Navigation Example with Dependencies 
Considering the lesson 1 from the game, the navigation 

algorithm is executed using the concept dependency graph 
shown in Figure 2. The concepts from lesson 1 being same 
angle qubit polarization (S), orthogonal qubit polarization 
(O), opposite quadrant qubit polarization (Q), vector notation 
(V), linear combination (LC), Ket notation (K), and the 
notion of a basis (B). The distribution of these concepts 
among 12 exercises of lesson 1 are denoted as P1 – {S,V} ,P2 
– {O,V}, P3 – {Q,V}, P4 – {S,K}, P5 – {O,K}, P6 – {Q,K}, 
P7 – {S,LC}, P8 – {O,LC}, P9 – {Q,LC}, P10 – {S,B}, P11 – 
{O,B}, P12 – {Q,B}. The dependency map for the exercises 
in the game is shown in Figure 3. 

 
Fig. 2. Concept dependency graph of lesson 1. 

 
Fig. 3. Exercise dependency graph with 12 exercises of lesson 1. 

Table I in Appendix shows a success scenario where the 
player successively solves the presented exercises in lesson 
1. The edge weights are calculated using eq. 4 and next node 
is chosen using eq. 5. All ties are broken arbitrarily. 

V. SUPER CONCEPTS AND INTER-LESSON DEPENDENCIES 
While the concept and exercise graphs provide a fine 

grained view of a game unit, we can abstract these 
dependencies to a higher (lesson) level in order to determine 
the inter-lesson dependencies. This abstraction is represented 
using the notion of super-concepts; each super-concept is an 
encapsulation of all the concepts and the lesson’s end goal. 
Each lesson in a game unit may be associated with one or 
more super-concepts and the super-concepts in turn may 
depend on one or more concepts or other super-concepts. To 
achieve the lesson’s goal, therefore, the player should 
achieve proficiency in all the associated concepts of that 
super-concept. The concept dependency graphs along with 
the corresponding super concepts are shown in Figure 4. The 
dotted arrows do not represent a physical dependency rather 
abstract association of every concept with the super-concept. 
Unlike in Figure 3, the super-concept does not correspond to 
a physical exercise inside the game in Figure 4. 

 

  

 

 

(a) (b) 

(c) 
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Fig. 4. Concept dependency graphs with super-concepts of lesson 1 (fig. 
a), lesson 2 (fig. b), lesson 3 (fig. c) and the lesson dependency graph (fig. 

d) of these super-concepts. 

The concepts in lesson 2 Figure 4 (b) are computational 
basis (cb), basis transformation (bt), horizontal component 
(hc), and vertical component (vc) with the super-concept 
being measurement. The concept in lesson 3 shown in Figure 
4 (c) include classical bits to quantum bit mapping with the 
super-concept of the lesson being quantum communication 
(qm). Similarly, Figure 4 (a) shows the super-concept for 
lesson 1 as qubit state (qs). As concepts dependency graphs 
are used to construct exercise dependency graphs, super 
concepts are used to construct lesson dependency graph 
shown in Figure 4 (d). 

The lesson dependency graph provides the high-level 
overview of lesson navigation. In Figure 4, the measurement 
super-concept needs qubit state as a prerequisite. This 
dependency does not mean each and every concept of the 
super-concept are depending on each and every concept of 
the parent super-concept, rather the knowledge of the qubit 
state is necessary in-order to understand and solve 
measurement exercises on a higher level. For a game with 
multiple lessons, the lesson dependency graph is used to 
traverse through different levels in the game. Once a lesson 
node is being visited, the concept dependency graph of that 
super concept is used to form the exercise dependency graph 
to further traverse through that level in the game. The 
concepts in the graph could all be independent in which case 
navigation hints with independent concepts algorithm is 
executed instead. 

Traversal through the lesson dependency graph can be 
done in two ways based on preserving engagement or 
freshness metric - a top-down approach guided by 
engagement or a bottom-up approach guided by modular 
concept structure. In top down approach, a schedule can be 
generated by moving to the next lesson in the graph even if 
the learning progress vector does not have a value 1 for all 
the concepts of the super-concept implying learning value of 
super-concept is not 1. This is to maintain the engagement by 
providing the player with new concepts for a change, and get 
back to the failed concepts later. Yet, the value of the current 
super-concept cannot be set to 1 even if all the concepts in 
the current concept are marked one, as the dependency is not 
yet satisfied. This will only be done once the player returns 
to the previous lesson node and successfully completed the 
remaining concepts. The second approach is a strict follow of 
the policy that parent node concept proficiency must be 1 
before moving to the child node, else the player has to revert 

to the learning videos or tutorials to obtain the knowledge of 
the relevant concepts to continue further. There can also be a 
threshold proficiency of concepts, when met sets the super-
concept proficiency as 1 to allow the player navigate through 
other lessons using the lesson dependency graph. These 
questions can be answered empirically by performing 
experiments, analyzing the engagement and learning 
potential of the players thereby reflecting on the efficiency of 
the approaches optimal way can be considered. 

VI. CONCLUSIONS 
The development of an educational gamified paradigm to 

teach counter-intuitive subjects such as quantum 
cryptography requires proper identification of concepts and 
concept dependencies. Equally important, in order to 
maintain student engagement, is an adaptive navigation 
mechanism to traverse the game such that the student 
achieves maximum proficiency in all the subject areas. This 
paper presented the first of its kind abstract model for 
designing a game for quantum cryptography. This model was 
implemented in our game QuaSim in order to dynamically 
schedule exercises in an adaptive and controlled manner. 
Future work will involve integrating the game in the 
classroom environment for easy adoption [20]. 
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APPENDIX 

TABLE I.  EXECUTION OF DEPENDENCY ALGORITHM FOR LESSON 1. 

Nodes in V Nodes in P Current node 
solved by the 

player 

Node to explore 
children (E) 

Edge Weights 
adjacent to node 

E 

Node with Max 
value 

Concepts learnt 

P1, P2, P3  P1    〈𝑆, 𝑉〉 

P2, P3 P1 P2    〈𝑆, 𝑉, 𝑂〉 

P3 P1, P2 P3    〈𝑆, 𝑉, 𝑂, 𝑄〉 

 P1, P2, P3  P1 P1 → (P9, P8, P6, 
P5) = 1

6
, 

P1 → (P7, P4) = 0.99

6
 

P9  

P9 P2, P3 P9    〈𝑆, 𝑉, 𝑂, 𝑄, 𝐿𝐶〉 

 P2, P3, P9  P2 P2 → (P4, P6) = 1

6
, 

P2 → P5 = 0.99

6
 

P4  

P4 P3, P9 P4    〈𝑆, 𝑉, 𝑂, 𝑄, 𝐿𝐶, 𝐾〉 

 P3, P9, P4  P3 P3 → all nodes 
adjacent to P3 
have values 0 

  

 P9, P4  P9 P9 → (P10, P12) =

 
1

6
, 

P9 → P11 =  
0.99

6
 

P10  

P10 P4 P10    〈𝑆, 𝑉, 𝑂, 𝑄, 𝐿𝐶, 𝐾, 𝐵〉 

 P4, P10  P4 <All concepts are 
learnt, end> 

  

 

Total of six exercises are solved in following sequence: P1, P2, P3, P9, P4, P10. 

  




