

1 Journal of The Colloquium for Information Systems Security Education, Volume 8, No. 1, Fall 2020

An Experimental setup for Detecting SQLi
Attacks using Machine Learning Algorithms

Binh An Pham

West Texas A&M University
Canyon, USA

bpham1@buffs.wtamu.edu

Vinitha Hannah Subburaj, Ph.D.
West Texas A&M University

Canyon, USA
vsubburaj@wtamu.edu

Abstract—SQL injection attacks (SQLi attacks) have
proven their danger on several website types such as social
media, e-shopping, etc. In order to prevent such attacks from
occurring, this research effort investigates on efficient ways of
detection and prevention, so that we can preserve each cyber-
user’s right of privacy. This research effort is aimed at
investigating and looking at different ways to protect websites
from SQL injection attacks. In this research effort, machine
learning algorithms were used to detect such SQLi attacks.
Machine Learning (ML) algorithms are algorithms that can
learn from the data provided and infer interesting results from
the dataset. We used SQL code and user input as our data and
ML algorithms to detect malicious code. The machine learning
model developed in this research can detect such attacks from
happening in future. The precision and accuracy of the
machine learning algorithms in terms of predicting the SQLi
attacks has been calculated and reported in this research
paper.

Keywords—cybersecurity, SQL injection attacks, machine
learning algorithms

I. INTRODUCTION
SQL injections (SQLi) are attacks in which an attacker

sends SQL statements to an SQL database; the SQL
statements allow the attacker to control what the server does.
By doing so, an attacker can take full control over the server
[1]. Attackers can send code by simply inputting an SQL
statement in place of a username and password. The only way
an attacker can use this exploit is by looking for inputs on the
website in question. Assuming no security measures were
taken towards the creation of the web application, this SQL
statement would list all customers in the Customer database.

SQL statements can also allow attackers to gain
administrator rights to the database as well, which means the
attacker can add, edit, or delete data with nothing stopping
them from doing it. The login boxes or inputs are the places
where the SQL statements are typed, which then sends the
malicious code to be run on the server hosting the database
[2]. There are several types of SQL injection attacks that
could be deployed [3]. Depending on what the attacker’s goal
is, the SQL injections are sent to the server one after another
or all at the same time. Once the attacker gets to the database,
they will be able to impose threats from several perspectives.
The attacker may have access to very sensitive information
and, therefore, can perform obliteration and alteration on that
information.

Due to the increasing number of cyber-attacks and
security compromises carried out in the Information
Technology sector, quality research is carried out in the areas
of cybersecurity to prevent such attacks from happening is
becoming very crucial. This research has set up an
experimental model that can not only be used for continuing
research but also used inside classrooms for teaching
purposes. The results obtained through this research effort
has opened many doors for us to continue working on this
project to obtain more accurate results. Since, there is not
much research done in this area of using machine learning
algorithms to predict SQLi attacks, we believe that the results
disseminated in this paper may be useful to the entire
computer science research community.

The rest of the paper is structured as follows. Section II
discusses the state of the art. Experimental setup is described
in Section III. Section IV discusses the results from the
research. Section V concludes the paper with future work.

II. RELATED WORK
SQL-DOM [4] is one of those prevention methods that

was developed to handle the injected HTML’s commands.
SQL-DOM can turn HTML into structured data thus making
it hard for the hackers to enter HTML commands as input.
Another preventive way is SQLrand [5], a method that
transforms the application Instruction-Set Randomization to
an SQL language, and the result of the transformation will be
appended by a random number, with which the hacker who
tries to perform any SQL injection will not be able to guess
the appended number. AMNESIA [6] uses static analysis and
runtime monitoring of application code to detect and prevent
SQLI attacks. SQL injection, Fast Flux Monitor, Machine
Learning, and Ardilla tools are methods to detect SQL
injection attacks, while Noxes tool, SQLMap, and Session
Shield are methods used to detect and prevent SQL injection
simultaneously [7]. Joshi and Geetha in [8] have used a
classifier which uses a combination of Role Based Access
Control mechanism and Naïve Bayes machine learning
algorithm for detecting SQL Injection attacks. Valeur et al.
[9] in their paper, discussed a learning-based approach to
detect SQL attacks. Ladole and Phalke [10] in their paper
have used Query tree, Fisher Score, and Support Vector
Machine classification to detect SQL injection attacks. What
differentiates the proposed research from existing work is the
experimental setup that can be used across different machine
learning algorithms to detect SQL Injection attacks. Rawat

2 Journal of The Colloquium for Information Systems Security Education, Volume 8, No. 1, Fall 2020

and Kumar [11] in their paper have talked about detecting
SQL injection attacks using SVM classification algorithm.

Chen. et. al. [12] in their paper discussed a rule matching
method of SQL injection detection using machine learning.
The paper discussed the use of word vector text
representation method and support vector machine (SVM)
classification model to detect malicious SQL queries. Gu. et.
al. in their paper [13], discussed a traffic-based SQL injection
detection framework named DIAVA. This framework used a
regular expression model to analyze the work traffic of SQL
operations. DIAVA framework used a front-end to collect
network related to SQL injection attacks and a backend to
evaluate the vulnerability using dictionary attack analysis.
Multilevel RegExp model is used to detect the attacks and to
determine the vulnerability of leaked data. DIAVA
framework used Hyperscan by Intel to perform multilevel
matching of RegExps. Das. et. al. [14] in their paper have
described edit-distance approach to classify a dynamic SQL
query as safe or malicious using a web- profile that is
prepared during the training phase along with the dynamic
SQL queries. The authors used well-known supervised
approaches such as Naive Bayesian, SVM, and Parse-tree
based approach to analyze the dataset. The paper does a
comparative study of the edit-distance and binary-distance
methods with the machine learning classification algorithms.
The proposed method of classification had good results with
dynamic SQL queries with few overheads.

III. EXPERIMENTAL SETUP
In this research effort, we used different machine learning

algorithms to detect SQL Injection attacks. The dataset used
for this research consisted of both vulnerable and safe SQL
code. The datasets considered as input must be preprocessed
and a set of features must be extracted from this dataset
through a process called feature extraction. The results
obtained from the classification were used to determine the
vulnerable code. At the end, the classification accuracy,
precision, and confusion matrix of each of the machine
learning algorithms used will be determined. The model used
in this research effort to predict SQLi attacks can be found in
Figure. 1.

Fig. 1. Proposed model to Detect SQL Injection Attacks using Machine

Learning Algorithms

A. Technologies
Python (3.7) was the language of choice because of its

relatively simple syntax and the extent of supported libraries
aimed at data science is second to none. The selected libraries
were sklearn, which provided a wide variety of built-in
machine learning algorithms and exceptionally fast setup
time, xgboost, which was one of the best libraries to deploy
extreme gradient boosting model, and pandas, which was a
powerful library for data science. The development
environment was IDLE, and the output was in the integrated
shell.

B. Datasets
The process of collecting SQL injection (SQLi) malicious

and safe queries was very challenging. We initially tried
datasets that were manually created. After spending a
significant amount of research, we ended up using two online
sources primarily to gather our test and training datasets.
Malicious queries, which tally up to 783 queries, were taken
from [15] and benign queries, which tallies up to 700 queries,
were taken from [16-19], and were put together into a text
file. Then we assigned the queries with labels, label 0 for
benign and label 1 for malicious.

C. Proposed Model
In this section, we proposed a unique model using

machine learning to detect SLQi attacks. Instead of tackling
the injection on the injection attacks on the server side by
guarding the database, this model is designed to act as a filter
on the client side. As a result, most of our data are text-based.

1) Data Preparation
For the purpose of reducing data noise and improving

precision, unnecessary spaces and escape sequences were

3 Journal of The Colloquium for Information Systems Security Education, Volume 8, No. 1, Fall 2020

eliminated and all the queries were converted into lowercase
form.

2) Training and Testing Datasets
The training and testing sets are taken randomly from the

dataset with a conventional ratio of 80-20 (80% for training
and 20% for testing) usingtrain_test_splitfunction built into
sklearn library:

train_test_split(trainDF['text'], trainDF['label'], test_size =
0.2)

3) Parser
Our model came across a common adversity during the

data processing phase where traditional machine learning
model explicitly takes in structured tabular numeric data, but
our collected data are entirely non-structured texts. This is
where parser for text comes into play. Text parsing is the
process of transforming given series of text into desired
smaller components based on some specific rules. There are
two common ways to parse texts: regular expression
separation and tokenization. The former parses the targeted
text using desired regular expressions such as “[a-z]”, “[\t]”.
The latter divides the text into tokens, where each token can
be a character, a word or a phrase. In the case of SQLi attacks,
the regular expressions do not determine the malice of a
query, the appropriate text parsing method for this model is
tokenization. Queries are split into tokens of words. For
example:

Parsing “or 1=1 -- 1” into “or”, “1=1”, “--”, “1”

4) Natural Language Processing (NLP) techniques and
 feature extraction

For NLP, there are many featured engineering
techniques, but the one that proves to be the most useful for
this SQLi attacks detecting model is Word Level TF-IDF
Vectors. TF-IDF stands for Term Frequency and Inverse
Document Frequency, which is an important index for term
searching and figuring out the relevancy of specific terms in
a document. Term Frequency specifically measures how
often a word occurs in a document, where Document
Frequency determines how often a word occurs in an entire
set of documents. The formula to calculate the relevancy of a
specific word is as follows:

or

The most significant advantage of TF-IDF is that it will

assume that the documents are just bags of words, where each
word does not have any correlation to another. This method
is simple but powerful for our use case since in SQL, there
are no tense or grammar rules like human languages.

5) Machine Learning Algorithms
The proposed model used the following machine learning

algorithms:

• Naïve Bayes Classifier

• Support Vector Machine

• Decision Forest

• Logistic regression

• Extreme Gradient Boosting

To preserve the experimental aspect of our model, every
parameter for the algorithms are kept to default.

D. Alignment with NICE Framework
The undergraduate research project discussed in this

paper includes many of the NICE Framework Knowledge
areas [20] such as K0069 - Knowledge of query languages
such as SQL (structured query language), K0070 -
Knowledge of system and application security threats and
vulnerabilities (e.g., buffer overflow, mobile code, cross-site
scripting, Procedural Language/Structured Query Language
[PL/SQL] and injections, race conditions, covert channel,
replay, return-oriented attacks, malicious code), K0234 -
Knowledge of full spectrum cyber capabilities (e.g., defense,
attack, exploitation). K0235 - Knowledge of how to leverage
research and development centers, think tanks, academic
research, and industry systems, K0236 - Knowledge of how
to utilize Hadoop, Java, Python, SQL, Hive, and Pig to
explore data, and K0238 - Knowledge of machine learning
theory and principles.

IV. RESULTS & DISCUSSION

A. Evaluation Metrics
In each of the algorithms used the precision, recall, F1

score, support, macro average, weighted average, and the
confusion matrix was determined.

1) Precision: is the ratio of tp to tp + fp where tp represents
the number of true positives and fp represents the number
of false positives [21].

2) Recall: is calculated by the ratio tp to tp + fn, where tp
represents the number of true positives and fn represents
the number of false negatives [21].

3) F1-score: is the weighted harmonic mean of the precision
and recall [21].

4) Weighted average: is calculated by calculating the
metrics of each label and then determining the average
weighted by support [21].

5) Confusion matrix: is defined as a matrix C such that Cij
is equal to the observations that are known to be in group
i but predicted to be group j [22].

4 Journal of The Colloquium for Information Systems Security Education, Volume 8, No. 1, Fall 2020

B. Results
Figure. 2 show a sample classification report and

confusion matrix of Extreme Gradient Boosting algorithm
used in this research effort.

Fig. 2. Classification report and Confusion matrix for Extreme Gradient

Boosting algorithm

Table I below summarizes the evaluation results on
different metrics used by this machine learning model setup.
On this test run, there are a total of 175 support data points,
with 76 for class 0 (non-malicious) and 99 for class 1
(malicious). Based on the results, 3 out of 5 algorithms tested
yielded 100% accuracy, except for Naïve Bayes (77%) and
Support Vector Machine (57%).

TABLE I. EVALUATION RESULTS

A
lg

or
ith

m
s Metrics (Class0/Class1)

Precision Recall F1-score Weighted
average

Accuracy

Naïve
Bayes

1.00/0.71 0.46/1.00 0.63/0.83 0.74 0.77

Logistic
Regression

1.00/1.00 1.00/1.00 1.00/1.00 1.00 1.00

SVM 0.00/0.57 0.00/1.00 0.00/0.72 0.41 0.57

Rando
Forest

1.00/1.00 1.00/1.00 1.00/1.00 1.00 1.00

Extreme
Gradient
Boosting

1.00/1.00 1.00/1.00 1.00/1.00 1.00 1.00

V. CONCLUSION & FUTURE WORK
Through this research effort, 1) An experimental setup to

run different machine learning algorithms to detect SQL
Injection attacks was developed; 2) Research results
produced can be used by the research community working on

Cyberattacks; 3) Accuracy of the machine learning
algorithms used in research were determined; and 4)
Research has the potential to be expanded in the future by
adding more machine learning algorithms.

This research effort has led to a novel approach in terms
of predicting SQLi attacks using machine learning algorithm
and provides an alternative approach to the traditional models
like AMNESIA, SQLrand, and SQLdom. This research
effort if continued in the right direction might result in a SQLi
attacks detecting model that can be used across different
platforms to detect and prevent SQLi attacks from happening
in the future. The results obtained through this research effort
are preliminary and needs to be optimized for better results.
The experimental model developed must be tested out with
larger and more diverse datasets to improve the reliability and
accuracy. Furthermore, a more powerful and cutting-edge
methodology like deep learning will be taken into
consideration, which would improve the automation and
longevity of the model developed.

REFERENCES
[1] Acunetix. "What Is SQL Injection (SQLi) and How to Fix It." Web.
[2] Tajpour, Atefeh, Suhaimi Ibrahim, and Mohammad Sharifi. "Web

application security by sql injection detectiontools." IJCSI
International Journal of Computer Science Issues 9.2 (2012): 332-
339.

[3] Vinitha Subburaj, Daniel Thomas Loughran, MayarKefah Salih,
“All About SQL Injection Attacks”, CISSE 2018, New Orleans, LA.

[4] McClure, Russell A., and Ingolf H. Kruger. "SQL DOM: compile
time checking of dynamic SQL statements." Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on.
IEEE, 2005.

[5] Boyd, Stephen W., and Angelos D. Keromytis. "SQLrand:
Preventing SQL injection attacks." International Conference on
Applied Cryptography and Network Security. Springer, Berlin,
Heidelberg, 2004.

[6] Halfond, William GJ, and Alessandro Orso. "AMNESIA: analysis
and monitoring for NEutralizing SQL-injection attacks."
Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering. ACM, 2005.

[7] Alwan, Zainab S., and Manal F. Younis. "Detection and Prevention
of SQL Injection Attack: A Survey." (2017).

[8] Joshi, A., & Geetha, V. (2014). SQL Injection detection using
machine learning. Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), 2014 International
Conference on, 1111-1115.

[9] Valeur, Fredrik, Darren Mutz, and Giovanni Vigna. "A learning-
based approach to the detection of SQL attacks." International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, Berlin, Heidelberg, 2005.

[10] Ladole, Aniruddh, and DA, Phalke. "SQL Injection Attack and User
Behavior Detection by Using Query Tree Fisher Score and SVM
Classification." International Research Journal of Engineering and
Technology 3.6 (2016).

[11] Rawat, R. & Kumar, S. (2012). SQL injection attack detection using
SVM. International Journal of Computer Applications.

[12] Chen, Zhuang, and Min Guo. "Research on SQL injection detection
technology based on SVM." MATEC Web of Conferences. Vol.
173. EDP Sciences, 2018.

[13] Gu, Haifeng, et al. "DIAVA: A Traffic-Based Framework for
Detection of SQL Injection Attacks and Vulnerability Analysis of
Leaked Data." IEEE Transactions on Reliability (2019).

5 Journal of The Colloquium for Information Systems Security Education, Volume 8, No. 1, Fall 2020

[14] Das, Debasish, Utpal Sharma, and D. K. Bhattacharyya. "Defeating
SQL injection attack in authentication security: an experimental
study." International Journal of Information Security 18.1 (2019): 1-
22.

[15] https://github.com/client9/libinjection.git
[16] https://archive.ics.uci.edu/ml/machine-learning-databases/00237
[17] https://www.kaggle.com/wjburns/common-password-list-rockyoutxt
[18] https://www.kaggle.com/hackerrank/developer-survey-2018
[19] https://www.kaggle.com/siddharthkumar25/malicious-and-benign-

urls
[20] Newhouse, William, et al. "National initiative for cybersecurity

education (NICE) cybersecurity workforce framework." NIST
Special Publication 800.2017 (2017): 181.

[21] https://scikitlearn.org/stable/modules/generated/sklearn.metrics.preci
sion_recall_ fscore_support

[22] https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.confusion_mat

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_mat
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_mat

