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Abstract—SQL injection attacks (SQLi attacks) have 
proven their danger on several website types such as social 
media, e-shopping, etc. In order to prevent such attacks from 
occurring, this research effort investigates on efficient ways of 
detection and prevention, so that we can preserve each cyber-
user’s right of privacy. This research effort is aimed at 
investigating and looking at different ways to protect websites 
from SQL injection attacks. In this research effort, machine 
learning algorithms were used to detect such SQLi attacks. 
Machine Learning (ML) algorithms are algorithms that can 
learn from the data provided and infer interesting results from 
the dataset. We used SQL code and user input as our data and 
ML algorithms to detect malicious code. The machine learning 
model developed in this research can detect such attacks from 
happening in future. The precision and accuracy of the 
machine learning algorithms in terms of predicting the SQLi 
attacks has been calculated and reported in this research 
paper. 
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I. INTRODUCTION 
SQL injections (SQLi) are attacks in which an attacker 

sends SQL statements to an SQL database; the SQL 
statements allow the attacker to control what the server does. 
By doing so, an attacker can take full control over the server 
[1]. Attackers can send code by simply inputting an SQL 
statement in place of a username and password. The only way 
an attacker can use this exploit is by looking for inputs on the 
website in question. Assuming no security measures were 
taken towards the creation of the web application, this SQL 
statement would list all customers in the Customer database. 

SQL statements can also allow attackers to gain 
administrator rights to the database as well, which means the 
attacker can add, edit, or delete data with nothing stopping 
them from doing it. The login boxes or inputs are the places 
where the SQL statements are typed, which then sends the 
malicious code to be run on the server hosting the database 
[2]. There are several types of SQL injection attacks that 
could be deployed [3]. Depending on what the attacker’s goal 
is, the SQL injections are sent to the server one after another 
or all at the same time. Once the attacker gets to the database, 
they will be able to impose threats from several perspectives. 
The attacker may have access to very sensitive information 
and, therefore, can perform obliteration and alteration on that 
information. 

Due to the increasing number of cyber-attacks and 
security compromises carried out in the Information 
Technology sector, quality research is carried out in the areas 
of cybersecurity to prevent such attacks from happening is 
becoming very crucial. This research has set up an 
experimental model that can not only be used for continuing 
research but also used inside classrooms for teaching 
purposes. The results obtained through this research effort 
has opened many doors for us to continue working on this 
project to obtain more accurate results. Since, there is not 
much research done in this area of using machine learning 
algorithms to predict SQLi attacks, we believe that the results 
disseminated in this paper may be useful to the entire 
computer science research community. 

The rest of the paper is structured as follows. Section II 
discusses the state of the art. Experimental setup is described 
in Section III. Section IV discusses the results from the 
research. Section V concludes the paper with future work. 

II. RELATED WORK 
SQL-DOM [4] is one of those prevention methods that 

was developed to handle the injected HTML’s commands. 
SQL-DOM can turn HTML into structured data thus making 
it hard for the hackers to enter HTML commands as input. 
Another preventive way is SQLrand [5], a method that 
transforms the application Instruction-Set Randomization to 
an SQL language, and the result of the transformation will be 
appended by a random number, with which the hacker who 
tries to perform any SQL injection will not be able to guess 
the appended number. AMNESIA [6] uses static analysis and 
runtime monitoring of application code to detect and prevent 
SQLI attacks. SQL injection, Fast Flux Monitor, Machine 
Learning, and Ardilla tools are methods to detect SQL 
injection attacks, while Noxes tool, SQLMap, and Session 
Shield are methods used to detect and prevent SQL injection 
simultaneously [7]. Joshi and Geetha in [8] have used a 
classifier which uses a combination of Role Based Access 
Control mechanism and Naïve Bayes machine learning 
algorithm for detecting SQL Injection attacks. Valeur et al. 
[9] in their paper, discussed a learning-based approach to 
detect SQL attacks. Ladole and Phalke [10] in their paper 
have used Query tree, Fisher Score, and Support Vector 
Machine classification to detect SQL injection attacks. What 
differentiates the proposed research from existing work is the 
experimental setup that can be used across different machine 
learning algorithms to detect SQL Injection attacks. Rawat 
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and Kumar [11] in their paper have talked about detecting 
SQL injection attacks using SVM classification algorithm. 

Chen. et. al. [12] in their paper discussed a rule matching 
method of SQL injection detection using machine learning. 
The paper discussed the use of word vector text 
representation method and support vector machine (SVM) 
classification model to detect malicious SQL queries. Gu. et. 
al. in their paper [13], discussed a traffic-based SQL injection 
detection framework named DIAVA. This framework used a 
regular expression model to analyze the work traffic of SQL 
operations. DIAVA framework used a front-end to collect 
network related to SQL injection attacks and a backend to 
evaluate the vulnerability using dictionary attack analysis. 
Multilevel RegExp model is used to detect the attacks and to 
determine the vulnerability of leaked data. DIAVA 
framework used Hyperscan by Intel to perform multilevel 
matching of RegExps. Das. et. al. [14] in their paper have 
described edit-distance approach to classify a dynamic SQL 
query as safe or malicious using a web- profile that is 
prepared during the training phase along with the dynamic 
SQL queries. The authors used well-known supervised 
approaches such as Naive Bayesian, SVM, and Parse-tree 
based approach to analyze the dataset. The paper does a 
comparative study of the edit-distance and binary-distance 
methods with the machine learning classification algorithms. 
The proposed method of classification had good results with 
dynamic SQL queries with few overheads. 

III. EXPERIMENTAL SETUP 
In this research effort, we used different machine learning 

algorithms to detect SQL Injection attacks. The dataset used 
for this research consisted of both vulnerable and safe SQL 
code. The datasets considered as input must be preprocessed 
and a set of features must be extracted from this dataset 
through a process called feature extraction. The results 
obtained from the classification were used to determine the 
vulnerable code. At the end, the classification accuracy, 
precision, and confusion matrix of each of the machine 
learning algorithms used will be determined. The model used 
in this research effort to predict SQLi attacks can be found in 
Figure. 1. 

 

 
Fig. 1. Proposed model to Detect SQL Injection Attacks using Machine 

Learning Algorithms 

A. Technologies 
Python (3.7) was the language of choice because of its 

relatively simple syntax and the extent of supported libraries 
aimed at data science is second to none. The selected libraries 
were sklearn, which provided a wide variety of built-in 
machine learning algorithms and exceptionally fast setup 
time, xgboost, which was one of the best libraries to deploy 
extreme gradient boosting model, and pandas, which was a 
powerful library for data science. The development 
environment was IDLE, and the output was in the integrated 
shell. 

B. Datasets 
The process of collecting SQL injection (SQLi) malicious 

and safe queries was very challenging. We initially tried 
datasets that were manually created. After spending a 
significant amount of research, we ended up using two online 
sources primarily to gather our test and training datasets. 
Malicious queries, which tally up to 783 queries, were taken 
from [15] and benign queries, which tallies up to 700 queries, 
were taken from [16-19], and were put together into a text 
file. Then we assigned the queries with labels, label 0 for 
benign and label 1 for malicious. 

C. Proposed Model 
In this section, we proposed a unique model using 

machine learning to detect SLQi attacks. Instead of tackling 
the injection on the injection attacks on the server side by 
guarding the database, this model is designed to act as a filter 
on the client side. As a result, most of our data are text-based. 

1) Data Preparation 
For the purpose of reducing data noise and improving 

precision, unnecessary spaces and escape sequences were 
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eliminated and all the queries were converted into lowercase 
form. 

2) Training and Testing Datasets 
The training and testing sets are taken randomly from the 

dataset with a conventional ratio of 80-20 (80% for training 
and 20% for testing) usingtrain_test_splitfunction built into 
sklearn library: 

train_test_split(trainDF['text'], trainDF['label'], test_size = 
0.2) 

3) Parser 
Our model came across a common adversity during the 

data processing phase where traditional machine learning 
model explicitly takes in structured tabular numeric data, but 
our collected data are entirely non-structured texts. This is 
where parser for text comes into play. Text parsing is the 
process of transforming given series of text into desired 
smaller components based on some specific rules. There are 
two common ways to parse texts: regular expression 
separation and tokenization. The former parses the targeted 
text using desired regular expressions such as “[a-z]”, “[\t]”. 
The latter divides the text into tokens, where each token can 
be a character, a word or a phrase. In the case of SQLi attacks, 
the regular expressions do not determine the malice of a 
query, the appropriate text parsing method for this model is 
tokenization. Queries are split into tokens of words. For 
example: 

Parsing “or 1=1 -- 1” into “or”, “1=1”, “--”, “1” 

4) Natural Language Processing (NLP) techniques and 
 feature extraction 

For NLP, there are many featured engineering 
techniques, but the one that proves to be the most useful for 
this SQLi attacks detecting model is Word Level TF-IDF 
Vectors. TF-IDF stands for Term Frequency and Inverse 
Document Frequency, which is an important index for term 
searching and figuring out the relevancy of specific terms in 
a document. Term Frequency specifically measures how 
often a word occurs in a document, where Document 
Frequency determines how often a word occurs in an entire 
set of documents. The formula to calculate the relevancy of a 
specific word is as follows: 

 
or 

 
The most significant advantage of TF-IDF is that it will 

assume that the documents are just bags of words, where each 
word does not have any correlation to another. This method 
is simple but powerful for our use case since in SQL, there 
are no tense or grammar rules like human languages. 

5) Machine Learning Algorithms 
The proposed model used the following machine learning 

algorithms: 

• Naïve Bayes Classifier 

• Support Vector Machine 

• Decision Forest 

• Logistic regression 

• Extreme Gradient Boosting 

To preserve the experimental aspect of our model, every 
parameter for the algorithms are kept to default. 

D. Alignment with NICE Framework 
The undergraduate research project discussed in this 

paper includes many of the NICE Framework Knowledge 
areas [20] such as K0069 - Knowledge of query languages 
such as SQL (structured query language), K0070 - 
Knowledge of system and application security threats and 
vulnerabilities (e.g., buffer overflow, mobile code, cross-site 
scripting, Procedural Language/Structured Query Language 
[PL/SQL] and injections, race conditions, covert channel, 
replay, return-oriented attacks, malicious code), K0234 - 
Knowledge of full spectrum cyber capabilities (e.g., defense, 
attack, exploitation). K0235 - Knowledge of how to leverage 
research and development centers, think tanks, academic 
research, and industry systems, K0236 - Knowledge of how 
to utilize Hadoop, Java, Python, SQL, Hive, and Pig to 
explore data, and K0238 - Knowledge of machine learning 
theory and principles. 

IV. RESULTS & DISCUSSION 

A. Evaluation Metrics 
In each of the algorithms used the precision, recall, F1 

score, support, macro average, weighted average, and the 
confusion matrix was determined. 

1) Precision: is the ratio of tp to tp + fp where tp represents 
the number of true positives and fp represents the number 
of false positives [21]. 

2) Recall: is calculated by the ratio tp to tp + fn, where tp 
represents the number of true positives and fn represents 
the number of false negatives [21]. 

3) F1-score: is the weighted harmonic mean of the precision 
and recall [21]. 

4) Weighted average: is calculated by calculating the 
metrics of each label and then determining the average 
weighted by support [21]. 

5) Confusion matrix: is defined as a matrix C such that Cij 
is equal to the observations that are known to be in group 
i but predicted to be group j [22]. 
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B. Results 
Figure. 2 show a sample classification report and 

confusion matrix of Extreme Gradient Boosting algorithm 
used in this research effort. 

 
Fig. 2. Classification report and Confusion matrix for Extreme Gradient 

Boosting algorithm 

Table I below summarizes the evaluation results on 
different metrics used by this machine learning model setup. 
On this test run, there are a total of 175 support data points, 
with 76 for class 0 (non-malicious) and 99 for class 1 
(malicious). Based on the results, 3 out of 5 algorithms tested 
yielded 100% accuracy, except for Naïve Bayes (77%) and 
Support Vector Machine (57%). 

TABLE I.  EVALUATION RESULTS 

A
lg

or
ith

m
s Metrics (Class0/Class1) 

Precision Recall F1-score Weighted 
average 

Accuracy 

Naïve 
Bayes 

1.00/0.71 0.46/1.00 0.63/0.83 0.74 0.77 

Logistic 
Regression 

1.00/1.00 1.00/1.00 1.00/1.00 1.00 1.00 

SVM 0.00/0.57 0.00/1.00 0.00/0.72 0.41 0.57 

Rando 
Forest 

1.00/1.00 1.00/1.00 1.00/1.00 1.00 1.00 

Extreme 
Gradient 
Boosting 

1.00/1.00 1.00/1.00 1.00/1.00 1.00 1.00 

V. CONCLUSION & FUTURE WORK 
Through this research effort, 1) An experimental setup to 

run different machine learning algorithms to detect SQL 
Injection attacks was developed; 2) Research results 
produced can be used by the research community working on 

Cyberattacks; 3) Accuracy of the machine learning 
algorithms used in research were determined; and 4) 
Research has the potential to be expanded in the future by 
adding more machine learning algorithms. 

This research effort has led to a novel approach in terms 
of predicting SQLi attacks using machine learning algorithm 
and provides an alternative approach to the traditional models 
like AMNESIA, SQLrand, and SQLdom. This research 
effort if continued in the right direction might result in a SQLi 
attacks detecting model that can be used across different 
platforms to detect and prevent SQLi attacks from happening 
in the future. The results obtained through this research effort 
are preliminary and needs to be optimized for better results. 
The experimental model developed must be tested out with 
larger and more diverse datasets to improve the reliability and 
accuracy. Furthermore, a more powerful and cutting-edge 
methodology like deep learning will be taken into 
consideration, which would improve the automation and 
longevity of the model developed. 
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