

1 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Serverless Computing Architecture Security and
Quality Analysis for Back-end Development

Clark Jason Ngo

School of Technology &
Computing

City University of Seattle
Seattle, USA

clarkngo@cityuniversity.edu

Peng Wang
School of Technology &

Computing
City University of Seattle

Seattle, USA
wangkevin@cityuniversity.edu

Tuan Khai Tran
School of Technology &

Computing
City University of Seattle

Seattle, USA
t.k.tran@cityuniversity.edu

Sam Chung
School of Technology &

Computing
City University of Seattle

Seattle, USA
chungsam@cityu.edu

Abstract—The purpose of this paper is to propose how to
improve both quality and security for the back-end of a modern
software system through adapting to the serverless computing
architecture. For this purpose, this paper will conduct the
following three steps: 1) Show a complete back-end
architecture using three serverless computing such as Amazon
Web Service (AWS), Microsoft Azure (Azure), and Google
Cloud Platform (GCP). 2) Analyze each component's security
and quality of each serverless computing provider and
compare it to show similarities and differences. 3) Describe how
using a cloud service improves the quality and security of a
system.

Keywords—Serverless Development, Amazon Web Services,
Microsoft Azure, Google Cloud Platform, Security Design,
Quality Improvement

I. INTRODUCTION
The on-premise solution allows complete control of the

security level. However, on-premise tends to fall behind in
its security because it is rigid, time-consuming, and
expensive. Moreover, it is difficult to maintain and upgrade.
It is not able to quickly adapt to the ever-changing security
best practices and compliance to combat cyber-attacks and
meet the minimum regulatory requirements.

An international organization using the traditional on-
premise solution requires them to provision, operate, and
maintain multiple office spaces, data centers, developers,
system administrators in multiple locations, and the
application on their own. See Figure 1 for the on-premise
setup.

Fig. 1. Traditional On-Premise Solution.

How can we make the process better? Cloud computing.
With cloud computing, organizations can tap into a third

party's data center and use their infrastructure. The
organization still has to provision and operate these services
with less overhead expenses such as developers and system
administrators. Instead of capital expense for servers and data
centers, the organization would incur operating costs for
renting their infrastructure from third-parties offering these
services. Figure 2 shows the organization can focus on
housing developers and system administrators in their
headquarters.

Fig. 2. Cloud Computing Solution with data centers shown in a different
color to signify non-ownership of the infrastructure of the organization.

How can we make the process better? Enter serverless
computing. No need to provision, operate, and maintain data
centers. With that, serverless computing solution has less
code base and nothing to manage hence requiring fewer
developers and system administrators than the cloud
computing solution. Figure 3 shows the serverless
computing.

Fig. 3. Serverless Computing Solution with Less Code Base

Serverless computing is an event-driven model or code
execution where infrastructure is abstracted from the
developer or end-user [1]. These applications using

mailto:clarkngo@cityuniversity.edu
mailto:wangkevin@cityuniversity.edu
mailto:t.k.tran@cityuniversity.edu
mailto:chungsam@cityu.edu

2 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

serverless computing are run in the cloud. However, these
serverless applications that are managed by third parties are
also run on physical servers. Sounds familiar? Cloud is just
someone else's computer. So why use a serverless computing
model then if it's just another physical server? Adopting a
cloud-based service can downscale, bringing the costs to
almost 1/10 compared to maintaining our infrastructure [2].
It provides ease of provisioning, operating, and maintaining.
Cloud providers are compliant with most industry standard
and regulatory requirements. Cloud helps companies focus
more on business logic rather than spend time and resources
for provisioning, maintaining, and operating resources [3].

Serverless applications provide high availability, fault-
tolerant, scalability, and elasticity. With all the benefits
serverless architecture brings, it also has some limitations.
These limitations are controlling limit on infrastructure,
locked-in with a vendor, and the impact of cold start.
Moreover, moving the cloud would directly expose our
servers to the internet [3].

In managing our cloud services, the principle of do-not-
trust-anyone should be applied. This paper will show how a
serverless architecture can impact both security and quality
for a web application. The analysis will compare the cloud
services of Amazon Web Services (AWS), Microsoft Azure
(Azure), and Google Cloud Platform (GCP).

II. THE ARCHITECTURE FOR WEB APPS
A simple case of web application architecture. A client

can retrieve a static content in a Storage (File) Server. The
client can make an API call to a Compute Server (function)
that is authenticated through an authentication service. The
function can then query the Database Server. The Logging
and Monitoring Service will collect metrics and logs from all
the services. Figure 4 demonstrates the typical flow of
requests in a web application.

Fig. 4. Web Application Architecture.

AWS offers various serverless services that can allow
engineers to make a fully serverless back-end application.
Potential architectures for web and mobile applications are
shown in Figure 5 for AWS and Figure 6 for Azure. GCP also
has similar services, which can help to make a similar
architecture. The equivalent service names can be found in
Table I.

Fig. 5. AWS Serverless Architecture.

Fig. 6. Azure Serverless Architecture.

TABLE I. A COMPARISON OF SERVICE
NAME OF AWS, AZURE, AND GCP

Service Type
Service Names

AWS GCP Azure

Storage S3 Cloud
Storage Azure Blob

Network
Gateway API Gateway Cloud VPN VPN Gateway

Authentication
& Authorization IAM Cloud IAM Active

Directory

Compute Lambda Cloud
Functions

Azure
Functions

Database DynamoDB Cloud SQL Cosmos DB

Logging
Monitoring CloudWatch Google

Stackdriver Azure Monitor

III. SECURITY AND QUALITY ANALYSIS
Each component in the architecture, as shown in Figure

4, will be analyzed from security and quality perspectives to
see whether using serverless technologies can increase both
security and quality.

A. Storage Service
In the AWS architecture, the Simple Storage Service (S3)

is chosen for the storage service that will store all static
content such as HTML files, JavaScript files, images,

3 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Lambda function codes, and so forth. By using S3, four
methods can be used for conducting encryption at rest to
protect users' data [2]. The four methods are: 1) Data at rest
inside the volume, 2) All data moving between the volume
and the instance, 3) All snapshots created from the volume,
and 4) All volumes created from those snapshots. The
CloudFront will help S3 to set up the Secure Sockets Layer
(SSL) to apply the encryption in transit, which can protect
data between clients and the cloud [4]. From the quality
perspective, according to AWS [5], S3 can automatically
give users at least 3,500 write with 5,500 read requests per
second per prefix in a bucket. The document also mentioned
that there are no limits to the number of prefixes in a bucket,
which means S3 gives users the ability to conduct unlimited
read and write concurrent requests by adding more prefixes
for the same file. It is extremely hard and costly to do the
same with a non-serverless solution due to the hardware or
provision needs to be prepared ahead.

In the Google Cloud architecture, Cloud Storage is a
unified object storage to store live or archive data [6]. Data is
encrypted at rest and located on the server-side with Cloud
Storage. At the storage system layer, Google uses the
Advanced Encryption Standard (AES) for encrypting data at
rest. At the storage device layer, data is encrypted with AES
128 for hard disk drives and AES256 for solid-state drives.
This encryption at the storage device layer is done with the
device-level key. At backups, files are encrypted with Data
Encrypted Key (DEK) [7]. According to Google Cloud [8],
best practices for securing a Google Cloud Storage are as
follows: 1) Have distinct credentials per user, never share the
credentials, and securely store them. 2) Always use Transport
Layer Security (TLS) such as HTTPS to transmit data. 3) Use
Hypertext Transfer Protocol Secure (HTTPS) library that
validates server certificates to mitigate the risk of man-in-the-
middle-attack. 4) Revoke authentication credentials if an
application does not need access anymore. 5) Create a bucket
name with names difficult to guess and do not add sensitive
information such as our account or Application Programming
Interface (API) secret keys as part of the bucket name. In
terms of quality, Cloud Storage can provide 1000 writes per
second and unlimited reads. Scaling is provided for both
writes and reads [9]. Availability is improved through
scheduled deletion instead of immediate. This scheduled
deletion allows recovery from accidental deletions or
deletion from internal bugs or processes [10].

In the Microsoft Azure architecture, Azure also provides
the number of services for data storage, including Azure
Blob, Azure Files, Azure queue, and Azure tables. Azure
storage offers data stores for different objects such as a data
file repository, an archive for messaging channels, and
NoSQL datastore. Azure Blob is probably equivalent to
Amazon S3 as an object storage solution that can be used to
store all types of unstructured data [11]. With the use of
Representational State Transfer (REST)-ful, Blob store
manages to reduce, and Azure platform ensures that objects
will be stored and available on multiple storage copies, which
enhances Availability in Confidentiality, Integrity, and
Availability (CIA) triad. By replicating data, it also helps to

protect user's data in both planned and unplanned events [12].
Microsoft Azure storage services are also known for its
collection of security capabilities. Role-Based Access
Control (RBAC) allows users to secure their storage account
by restricting accesses following the least privilege principle.
Data transition across networks will also be secured by
encrypting with HTTPS, SMB 3.0, and client-side
encryption. They also provide Azure Disk Encryption for
virtual machines and data disks, Advanced Threat Protection
for monitor Storage logs, and check for any suspicious
requests to Block Blob storage.

All three service names provide data encryption at rest
and data encryption in transit in the aspect of security. They
also provide high write, read, and durability in the aspect of
quality. The high durability delivered by cloud service
providers is hard to achieve by an organization as it requires
huge expenses for infrastructure to build your own. See Table
II for a summary of storage service.

TABLE II. STORAGE SERVICE / FILE SERVER

Analysis
Service Names

AWS GCP Azure

Security Assurance

Data encrypted at rest Yes Yes Yes

Data encrypted in transit Yes Yes Yes

Quality Assurance

Write High High High

Read High High High

Durability High High High

B. Authentication and Authorization Service
Three services that include API Gateway, Identity and

Access Management (IAM), and Cognito are used in the
AWS architecture to achieve the authentication and
authorization functionality. A user's request will reach the
endpoint that offers by API Gateway and then passes to either
IAM for providing accesses with their infrastructure or
Cognito for providing accesses to outside users. Cognito
supports both encryptions at rest and in transit when it is
Health Insurance Portability and Accountability Act
(HIPAA) eligible and Payment Card Industry Data Security
Standard (PCI DSS), Service Organization Control (SOC),
ISO/EIC 27001, International Organization for
Standardization (ISO) / International Electrotechnical
Commission (IEC) 27017, ISO/IEC 27018, and ISO 9001
compliant [2]. From the quality perspective, Cognito offers
the capabilities of fully managing the user lifecycle and
automatically verifying identities from API Gateway without
customized implementation required out of the box. It can
improve the system quality a great deal by avoiding to use an

4 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

incorrect or weak authentication implementation. API
Gateway also offers the cache capability without requiring to
change any code plus the ability to control the API usage for
each of our clients for free.

GCP has Cloud IAM to allow administrators to have a
platform to manage and control user and group access for
cloud services [13]. IAM enforces policies to member
identities and roles. Roles are derived from the collection of
permissions. Figure 7 shows GCP's IAM. It adopts the
principle of least privilege. IAM configurations are on a per-
project basis. A project must exist first before adding users
and roles. Cloud Endpoints manages our API's development,
deployment, and monitoring [14]. Cloud Endpoints works in
conjunction with Cloud IAM to grant and revoke API access.
Google Cloud is compliant with ISO 27001, ISO 27017, ISO
27018, SOC 1/2/3, PCI DSS, and Cloud Security Assurance
(CSA) Security Trust Assurance and Risk (STAR) [6].

Fig. 7. GCP Identity and Access Management [6].

In GCP, the system is improved with encryption of inter-
service communication, which provides automatic
encryption for infrastructure Remote Procedure Call (RPC).
End-user data access is equipped with automatic mutual
encryption, see Figure 8 [10]. Insider risk is reduced through
two-party approval implementation for specific actions and
API debugging without exposure to sensitive information
[10].

Fig. 8. GCP Service Identity, Mutual Authentication, and Encrypted

Inter-Service [10].

All three service names provide IAM to access and
control resources for free in the aspect of security. They also
allow better authentication implementation in the aspect of
quality. Organizations creating their authentication service
run the risk of incorrect or weak authentication
implementation as it is not the core of their service. See Table
III for a summary of authentication and authorization service.

TABLE III. AUTHENTICATION AND AUTHORIZATION SERVICE

Analysis
Service Names

AWS GCP Azure

Security Assurance

IAM to access and control resources Yes Yes Yes

Quality Assurance

Avoids incorrect or weak
authentication implementation Yes Yes Yes

C. Computing Service
The Lambda service is chosen for AWS architecture’s

computing component. Lambda itself does not help to
improve the security directly since it is hiding behind API
Gateway. However, the security level can be raised indirectly
because the Lambda service will handle the OS level and
runtime level patching automatically, which will reduce the
risk of having vulnerabilities significantly. Additionally, it
also helps in raising the quality of the system a great deal. By
using Lambda, users can automatically scale in and out based
on the real-time traffic without even thinking about the
provision. It gives end users a much better user experience.

Cloud Function is a computing service provided by GCP
that lets us run code in the cloud. It shines best when used for
microservices as it adds agility by having small independent
functionalities running instead that one tremendous service
[15]. As of February 27, 2019, the quota for function calls is
at 40,000,000 in all regions. Security is still in the hands of
the developer. The developer should follow best practices
such as passing a JSON Web Token (JWT) to our functions,
attaching a role with least privileges, hard to guess function
name, and logging and monitoring using Stackdriver to
enhance security [16].

Similar to the Lambda and Cloud Function, Azure
Function is also a service that allows users to run small pieces
code or function on the cloud to solve a specific problem
without bothering other components related to the
application as well as the infrastructure to run this function.
Azure Function was built based on a trigger and binding
mechanisms. Triggers are used to make the functions run,
which will rely on a specific event to activate our function.
Binding is a way to declare used services to simplify the
interaction with input and output data [17]. To optimize the
performance, Azure Function can be integrated with some
other Azure services such as Cosmos DB, Azure Event Hubs,

5 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Azure Storage Blob. These services can be used to execute
our functions through some provided templates, including
CosmosDBTrigger, BlobTrigger, QueueTrigger, and
EvenHubTrigger.

Azure Active Directory is a Microsoft Azure solution for
IAM. The service is used to manage access to employees,
partners, customers, and corporate assets. Users can
synchronize their on-premise local infrastructure with
Windows Azure Active Directory to provide single sign-on
for users to access cloud applications [18]. Azure Active
Directory also brings multi-authentication to the table as an
additional defense to help a business protect sensitive
information and applications. Some of the best practices that
need to be considered when working with Azure Active
Directory include enabling single sign-on, enforcing multi-
authentication, applying role-based access control,
centralizing identity management, and being aware of
locations where resources are placed [19].

All three service names do not offer any security for the
compute service. The developer is responsible for building
secure codes. Compute service delivered by cloud providers
are exceptional in quality aspect as it enables organizations
to scale-in and out based on real-time traffic. See Table IV
for a summary on compute service.

TABLE IV. COMPUTE SERVICE / BACKEND SERVER

Analysis
Service Names

AWS GCP Azure

Security Assurance

Any security? No No No

Quality Assurance

Scale-in and out based on real-time
traffic Yes Yes Yes

D. Database Service
Several serverless database options can be chosen for the

AWS architecture. DynamoDB is one of them that can
deliver single-digit millisecond performance at any scale
[20]. The official document [20] also mentioned that
“DynamoDB can handle more than 10 trillion requests per
day and support peaks of more than 20 million requests per
second.” It makes DynamoDB is an excellent candidate for
any mission-critical workload. DynamoDB encrypts all
customers’ data at rest by default, which is an excellent
security feature that users can get for free [21]. According to
the official document [21], using DynamoDB also can help
to improve the system quality through different features it
has. First of all, it has an auto-scaling and on-demand mode
that allows users to scale up and down based on real-time
traffic ultimately. Secondly, DynamoDB can be used with
DynamoDB Accelerator to improve the read performance by
up to 10 times. Moreover, the DynamoDB Streaming feature

could help users to take advantage of real-time data
processing. Additionally, the built-in point-in-time recovery
feature gives users the ability to restore a table to any point
of time up to the second during the previous 35 days.

GCP offers various database services. Cloud SQL gives
us high performance, scalable, and manageable PostgreSQL
and MySQL databases in the cloud [22]. Cloud SQL has two
levels of access controls. First, instance-level access
authorizes access from an applicant, client, or other GCP
services to our Cloud SQL instance. Second, database access
uses MySQL Access Privilege System to manage MySQL
users in our Cloud SQL instance [23]. Cloud SQL access and
permissions can also be configured using Cloud IAM [24].
High availability is an option for a Cloud SQL project that
works by creating a replica of an instance through semi-
asynchronous replication in different zones [25].

Some of the more popular products when it comes to
database services for Microsoft Azure are SQL Database and
Cosmos DB. Azure Cosmos DB is known for its support on
the multi-model and the ability to globally distribute for any
scale. It is capable of replicating all the data in the database
to a global scope with more than 30 Microsoft Azure data
centers located throughout the world. With the ability to
replicate such global scope, application connected to Cosmos
DB will have very low latency with 99% data processing,
which will be guaranteed at less than 10ms for both read and
write [26]. In terms of security, Azure Cosmos DB uses
master keys and resource tokens to perform authentication
and provide appropriate access to its data and resources. It
also adds to the database another layer of protection in case
of crashes based on the "failover" mechanism. When a
problem such as power outage on all the datacenter or a
national, multinational scale incident, Cosmos DB can
automatically handle the situation [26]. Cosmos DB is
certified for various standards, such as CSA START and ISO
20000-1:2011 [26]. All the data stored is also well encrypted.

All three service names provide data encryption at rest
and data encryption in transit in the aspect of security. They
all offer unlimited throughput with different metrics and
terminologies. AWS uses Write Capacity Units (WCU) and
Read Capacity Units (RCU). GCP uses Read Units (RUs).
Azure uses Query Per Second (QPS). Recovery differs on the
entry-level for all three service names, and all are upgradable.
See Table V for a summary of database service.

TABLE V. DATABASE SERVICE / DATABASE SERVER

Analysis
Service Names

AWS GCP Azure

Security Assurance

Data encrypted at rest Yes Yes Yes

Data encrypted in transit Yes Yes Yes

6 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Analysis
Service Names

AWS GCP Azure

Quality Assurance

Throughput Unlimited Unlimited
RUs

Unlimited
QPS

Recovery Up to 35
days

Up to 30
days

Up to 90
days

E. Logging and Monitor Service
The CloudWatch is a service that is integrated with

almost all other AWS services to offer logging and motoring
capability. It is also used for this AWS serverless
architecture. The CloudWatch logs are PCI and FedRamp
compliant and also provide encrypted at rest as well as
encrypted in transit as its standard security features [27]. The
system quality also can be raised by using CloudWatch.
According to the official document [27], the CloudWatch
offers an easy way to collect and store logs, collect built-in
metrics, push custom metrics, and create dashboards. Most
importantly, the CloudWatch allows users to create alarms
based on some specific metrics, which can be used to trigger
other AWS services. It gives users a great ability to automate
tasks.

Google Stackdriver is a logging and monitoring tool for
GCP, AWS, on-premise, or hybrid. Stackdriver features are
debugger, error reporting, rapid discovery, uptime
monitoring, integrations, smart defaults, alerts, tracing,
logging, dashboards, and profiling. It helps enable
observability, working with multiple cloud services, create
fast fixes, and gather full-stack insights [6].

Azure Monitor is the selection for logging and
monitoring. There are two categories that data collected by
the service fall into, which are metrics and logs. Metrics refer
to a numerical value that interprets some data of a system. In
contrast, logs contain records that organized into a different
set of properties. Azure Monitor also has a responding
mechanism to critical situations. The respondent can be an
alert or sending emails to administrators who are responsible
for solving the issue, or it can launch an automated procedure
and attempt to fix the issue [28]. Another feature that Azure
Monitor can provide is to visualize monitoring data.
Collected Data and elements can be added into their
dashboard, which allows combining both metrics and logs
into charts and diagrams. Thus, it can leverage other Azure
services for publishing to different audiences [28].

All three service names provide data encryption at rest
and data encryption in transit in the aspect of security. They
all offer rapid discovery, uptime monitoring, and create fast
fixes. Basic logging and monitoring service are usually free
from the cloud service provider whose services you are using.
This service can drive down the cost of monitoring instances
and avoid the headache of integrations with other third-

parties. See Table VI for a summary of the logging and
monitoring service.

TABLE VI. LOGGING AND MONITORING SERVICE

Analysis
Service Names

AWS GCP Azure

Security Assurance

Data encrypted at rest Yes Yes Yes

Data encrypted in transit Yes Yes Yes

Quality Assurance

Rapid discovery Yes Yes Yes

Uptime monitoring Yes Yes Yes

Create fast fixes Yes Yes Yes

IV. SUMMARY OF SECURITY FOR
CLOUD SERVICES PROVIDERS

AWS, GCP, and Azure all support encrypting data at rest
and in transit that uses AES-256 encryption, which is the
industry standard and a secure block cipher. IAM for all three
cloud providers addresses the required access to security and
resource control. However, the implementation of
authorization for AWS, GCP, and Azure differs. In AWS, we
can immediately create users, groups, policies, and roles. In
GCP, we need to create a project or choose an existing project
before we can assign users, roles, etc. In Azure, it uses the
subscription scope that has an owner, contributor, or reader,
which grants different levels of access to resource groups
depending on the role. The resource group would also have
an owner, contributor, or reader. The concept of resource
groups is perfect for isolating resources, as shown in Figure
9 [29].

Fig. 9. Azure Active Directory Subscription and Resource Group [30].

V. FINDINGS

A. In Terms of Improving Security
Serverless architecture improves all aspects of security,

such as authentication, authorization, encryption,
confidentiality, integrity, and availability. Most providers

7 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

come with built-in monitoring and logging [1]. It delivers
ease of control, management that requires less technical
knowledge to implement better security.

Moreover, cloud providers are having better security
standards as they specialize in the business of securing
resources and applications. It is important to note that while
cloud vendors improve cloud security such as network or
infrastructure security, cloud users must ensure the security
of their APIs. See Table VII for API access types.

TABLE VII. API ACCESS TYPES

API access
type Explanation Example

Public APIs Public content Your homepage index.html

Internal APIs
APIs only
called by other
your functions

Function to call the data from
the database

Authenticated
APIs

APIs only
usable for users

Unregistered users are not
allowed to call API to mitigate
DDoS attacks from API call
abuse

APIs for third
parties

APIs shareable
to others

Integration for other third-
party applications

B. In Terms of Improving Quality
Improving quality improves security. Serverless

architecture improves quality by enforcing a consistent
configuration standard for instantiating resources. Tools for
monitoring, logging, and reviewing are readily available to
vulnerability checks. Less code to maintain means less
technical debt and fewer vulnerabilities from the codebase.
Availability is vastly improved through auto-scaling,
durability, and redundancy.

On the downside, serverless architecture has the
following considerations that are detrimental to quality if not
managed properly. These considerations are ephemeral
functions, cold start, limited database configuration, and no
system-level access. See Table VIII for architectural
considerations for serverless computing [1].

TABLE VIII. ARCHITECTURAL CONSIDERATIONS

Considerations Explanation Workaround

Ephemeral
functions

Functions are
deployed in a
container that they
persist for a certain
period only

Don’t use for large
processing
requirements

Cold start

Invoking function
for the first time
after it was inactive
increases execution
time

Keep the function hot
(stay alive) before
execution

Considerations Explanation Workaround

Limited DB
configuration

Limit to
simultaneous
connection in
relational DBs

Use NoSQL

No system-level
access

No support for
reading attributes
from configuration
files or spilling over
to in-memory cache
to disk

Don’t use for
applications needing
file system level or
operating system level
access

VI. SECURITY CONCERNS
Serverless architecture invites new security risks.

Serverless functions receiving input from event sources and
may include event messages injected with malicious data.
The microservices-oriented design makes it difficult to build
proper authentication due to the scale of serverless functions.
The auto-scaling of serverless functions can lead to high
financial cost if attacked with Denial-of-Service (DoS) [31].

VII. CONCLUSIONS
Serverless architecture drastically reduces security

vulnerabilities from legacy code and resource configurations.
AWS, GCP, and Azure all currently provide the minimum
regulatory requirement and best practices. Choosing a cloud
service provider would depend on the use case and extra
security features on a particular service. A cloud provider
might provide more insightful logging and review over the
other or offer better availability that does not immediately
shut down our resources after hitting the maximum instance
or call made to a service.

Some concerns on serverless computing: 1) controlling
limit on infrastructure as infrastructure is abstracted away
from the developer, 2) Vendor lock-in makes it harder to
integrate other services outside of the cloud provider's
ecosystem, 3) Unable to use a monitoring service using a
different third-party tool, (4) data injection on event message
consumed, (5) authentication implementation fatigue, and (6)
financial resource depletion due to DoS attacks.

It is important to follow industry guidelines to leverage
the use of serverless architecture and improve overall
security and quality of the application. See Table IX for
industry guidelines on serverless architecture
implementation.

TABLE IX. SERVERLESS ARCHITECTURE INDUSTRY GUIDING
PRINCIPLES (DELOITTE, 2018)

Principles Explanation Principles

Develop simple
purpose
functions

Use single-purpose
codes for more effortless
deployment and test

Develop simple
purpose functions

8 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Principles Explanation Principles

Design push-
based, event-
driven patterns

Allow event chain to
propagate without the
need for user input

Design push-based,
event-driven patterns

Create thicker
and powerful
frontends

Reduce function calls by
executing more complex
frond-end through rich
client-side application
framework

Create more
abundant and
powerful frontends

Incorporate
appropriate
security
mechanism
across the
technology stack

Use of API Gateway
layer and other
mechanisms such as
access controls,
authentication, IAM,
encryption, etc.

Incorporate
appropriate security
mechanism across
the technology stack

Identify
performance
bottleneck

Measure performance of
bottlenecks and identity
functions slowing a
service

Identify performance
bottleneck

REFERENCES
[1] Deloitte. (2018). Google Cloud Security Retrieved from

https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/techn
ology-media-telecommunications/Serverless%20Computing.pdf

[2] AWS. (2019a). AWS Compliance Programs. Retrieved from
https://aws.amazon.com/compliance/programs

[3] Ayoub, D., & Wacker, R. (2012). Security: On-premise or in the
cloud? Network World, 29(20), 18-19. Retrieved from
http://proxy.cityu.edu/login?url=https://search-proquest-
com.proxy.cityu.edu/docview/1265769745?accountid=1230

[4] AWS. (2019b). Amazon CloudFront custom SSL. Retrieved from
https://aws.amazon.com/cloudfront/custom-ssl-domains

[5] AWS. (2019c). Request Rate and Performance Guidelines. Retrieved
from https://docs.aws.amazon.com/AmazonS3/latest/dev/request-
rate-perf-considerations.html

[6] Google Cloud. (2019a). Trust & Security. Retrieved from
https://cloud.google.com/security/

[7] Google Cloud. (2019b). Encryption at Rest in Google Cloud
Platform. Retrieved from
https://cloud.google.com/security/encryption-at-rest/default-
encryption/

[8] Google Cloud. (2019c). Best Practices for Google Cloud Storage.
Retrieved from https://cloud.google.com/storage/docs/best-practices

[9] Google Cloud. (2019d). Stackdriver. Retrieved from
https://cloud.google.com/stackdriver/

[10] Google Cloud. (2019e). Serverless Computing – Architectural
Considerations & Principles. Retrieved from
https://services.google.com/fh/files/misc/security_whitepapers_marc
h2018.pdf

[11] Microsoft Azure. (2019a). Blob storage. Retrieved from
https://azure.microsoft.com/en-us/services/storage/blobs/

[12] Microsoft Azure. (2019b). Storage redundancy. Retrieved from
https://docs.microsoft.com/en-us/azure/storage/common/storage-
redundancy

[13] Google Cloud. (2019f). Cloud Identity & Access Management.
Retrieved from https://cloud.google.com/iam/

[14] Google Cloud. (2019g). Cloud Endpoints. Retrieved from
https://cloud.google.com/endpoints/

[15] Google Cloud. (2019h). Google Cloud Functions. Retrieved from
https://cloud.google.com/functions/

[16] Google Cloud. (2019i). Function Identity. Retrieved from
https://cloud.google.com/functions/docs/securing/function-identity

[17] Microsoft Azure. (2019c). An Introduction of Azure Function.
Retrieved from: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-overview

[18] Microsoft Corporation. (2018). Azure Functions and Serverless
platform security. Retrieved from:
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-
functions-serverless-platform-
security/Microsoft%20Serverless%20Platform.pdf

[19] Microsoft Azure. (2019d). Azure Identity Management and access
control security best practices. Retrieved from:
https://docs.microsoft.com/en-us/azure/security/azure-security-
identity-management-best-practices

[20] AWS. (2019d). Amazon DynamoDB. Retrieved from
https://aws.amazon.com/dynamodb

[21] AWS. (2019e). Amazon DynamoDB Features. Retrieved from
https://aws.amazon.com/dynamodb/features

[22] Google Cloud. (2019j). Cloud SQL. Retrieved
fromhttps://cloud.google.com/sql/

[23] Google Cloud. (2019k). Overview of High Availability
Configuration. Retrieved from
https://cloud.google.com/sql/docs/mysql/high-availability

[24] Google Cloud. (2019l). Project Access Control. Retrieved from
https://cloud.google.com/storage/quotas

[25] Google Cloud. (2019m). Project Access Control. Retrieved from
https://cloud.google.com/sql/docs/mysql/project-access-control

[26] Microsoft Azure. (2019e). Welcome to Microsoft Azure Cosmos
DB. Retrieved from: https://docs.microsoft.com/en-us/azure/cosmos-
db/introduction

[27] AWS. (2019f). Amazon CloudWatch Features. Retrieved from
https://aws.amazon.com/cloudwatch/features

[28] Microsoft Azure. (2019f). Azure Monitor overview. Retrieved from:
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

[29] Power, V. (2018). IAM Roundup: AWS vs. Azure vs. GCP.
Retrieved from https://www.twistlock.com/2018/09/25/iam-
roundup-aws-vs-azure-vs-gcp/

[30] Sandbu, M. (2018). Microsoft Azure and Security Best Practices –
Part 1 Identity. Retrieved from https://msandbu.org/microsoft-azure-
and-security-best-pratices-part-1-identity/

[31] Segal, O. (2019). The 12 Worst Serverless Security Risks. Retrieved
from https://www.darkreading.com/cloud/the-12-worst-serverless-
security-risks/a/d-id/1334079

https://www.darkreading.com/cloud/the-12-worst-serverless-security-risks/a/d-id/1334079
https://www.darkreading.com/cloud/the-12-worst-serverless-security-risks/a/d-id/1334079

	Serverless Computing Architecture Security and Quality Analysis for Back-end Development
	I. Introduction
	II. The Architecture for Web Apps
	III. Security and Quality Analysis
	A. Storage Service
	B. Authentication and Authorization Service
	C. Computing Service
	D. Database Service
	E. Logging and Monitor Service

	IV. Summary of Security for Cloud Services Providers
	V. Findings
	A. In Terms of Improving Security
	B. In Terms of Improving Quality

	VI. Security Concerns
	VII. Conclusions
	References

