

1 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Introducing Secure Design by Scripting
in an Undergraduate Microcontroller

Based Design Course

Kalyan Mondal
Gildart Haase School of Computer

Sciences and Engineering
Fairleigh Dickinson University

Teaneck, NJ, USA
mondal@fdu.edu

Angela Elias-Medina
Gildart Haase School of Computer

Sciences and Engineering
Fairleigh Dickinson University

Teaneck, NJ, USA
aaelimed@student.fdu.edu

Abstract—This paper discusses a systematic approach to
revising a second undergraduate course on microprocessor
system design to improve student learning outcomes by
introducing scripting-based design with a security mindset.
The current course is based upon using the Dragon 12-Plus
development system, which requires using compiled C code,
and does not offer any on-board security features. The updated
course has the intended outcomes of gaining design and
technical skills on multiple microcontroller-based design
platforms and introduce “security mindset” for networked
systems. We introduce a Project Based Learning (PBL)
approach, and the focus of the course is on hands-on activities
where the students work on multiple design projects using C
and MicroPython. The course hardware platform of Dragon
12-Plus is augmented with a small form factor pyboard, which
is used to acquire sensor data and transmit securely for simple
data analytics. We introduce three new laboratories, including
one on data security using MicroPython. We also outline
necessary changes to undergraduate engineering
programming course sequence. Additionally, mapping of these
new labs to CAE-CD KUs and the NICE Framework Specialty
Areas is included.

Keywords—microcontrollers, data security, project based
learning, pyboard, MicroPython

I. INTRODUCTION
The use of microcontrollers in industrial and net-centric

electronic devices has become ubiquitous over the past
several years. Electrical and computer engineers need to have
an understanding of microcontroller hardware and software
systems, their networking abilities, and be able to develop
systems with reduced vulnerabilities. Since many such
designs end up being connected to the Internet, the students
must develop a “security mindset” to avoid these smart
devices being hacked. The students should also be able to
utilize the secure data transmission, aggregation, and analysis
capabilities to design more applications that are useful.

At our college, an undergraduate microprocessor based
design course is presented in two-semesters with the first
semester course (EENG2287 Microprocessor System Design

I) focusing on microprocessor architecture and its
programming using the associated assembly language. The
second course, EENG3288 Microprocessor System Design
II, deals with microcontroller based system design [1] using
a high-level language, such as C. Students in the second
course learn about a relatively complex 16-bit
microcontroller (NXP HCS12 in our case) architecture. They
master an application development system (Dragon 12-Plus
in our case), and an Integrated Development Environment
(IDE) (CodeWarrior in our case) that allows I/O pin level
programming in C [2-3]. Typically, students learn how to
program parallel ports to control display systems, use real-
time interrupts to control external I/O devices, use timers to
generate arbitrary waveforms and measure them, use A/D
converters to acquire sensor (e.g., temperature, pressure, etc.)
data, and use PWM to control DC motors. This is atypical of
many colleges, where different microcontrollers and IDEs
are used for similar student learning outcomes. The students
not only learn how to pursue pin level programming for
simpler display devices, but also get an understanding of how
to develop C functions for re-use in their programs. In
particular, functions for initializing complex displays like
LCD and keyboards are discussed and form the foundation
of developing device drivers at the hardware level. Finally,
students develop application programs using both pin level
and function based programming. It is worth noting that
students find considerable difficulty developing and
debugging an application mainly due to two reasons: (a)
develop the full C program and compile to find errors and (b)
understand the operation of the interface properly and code
to apply proper voltage levels on pins at proper timings. We
feel that the reason (a) takes students a lot of time since the
compiler messages are quite cryptic. If the students could
develop a line of code and try before moving to the next line
code, more localized debugging will be possible.

In real world, the engineering graduates may have to use
a different microcontroller and its development system than
what they used in their colleges and have to spend a
considerable amount of time self-learning system interfacing
and programming requirements. Some authors [4] have
proposed learning multiple development systems with
pluggable microcontrollers or even a combination of This project was supported by the National Security Agency (NSA) under

Grant/Cooperative Agreement entitled ‘Cybersecurity Workforce
Education - CNAP Initiatives’ No. H98230-17-1-0321. The United States
Government is authorized to reproduce and distribute reprints
notwithstanding any copyright notation herein.

mailto:mondal@fdu.edu
mailto:aaelimed@student.fdu.edu
http://evbplus.com/dragon12_plus2_9s12_hcs12/dragon12_plus2_9s12_hcs12.html
https://www.nxp.com/support/developer-resources/software-development-tools/codewarrior-development-tools/downloads:CW_DOWNLOADS

2 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

reconfigurable platform (e.g. CPLD/FPGA) and a
microcontroller in the undergraduate program. Thus
introducing a second microcontroller and its IDE into the
existing course will be pedagogically beneficial to the
students.

For the last several years, microcontroller-based
embedded systems are being designed to be networkable and
get connected to the Internet as part of the deployment in
smart devices. Although microcontrollers like HCS12 are
networkable using Serial Communication Interface (SCI)
and Controller Area Network (CAN) interfaces built-in the
HCS12 chip, the Dragon 12-Plus development board does
not offer the Internet connectivity. The popular Arduino
platform with inexpensive WiFi - enabled ESP8266
microcontroller has provided a simple solution for Internet
connectivity and is liked equally by the hobbyists and self-
learners. Both require C language programming.

These Internet-ready devices, also known as Internet of
Things (IoT), may have vulnerabilities that can be exploited
by malicious intruders to breach privacy and/or cause serious
damage to the owners of such devices. Many newer
microcontroller devices, e.g., NXP Kinetis K8x, provide on-
chip cyclic redundancy check (CRC), random number
generation (RNG), and symmetric cryptographic
encryption/decryption capabilities whereby some of these
risks can be minimized. However, these also are C based
complex devices.

Another important shift in paradigm has revolutionized
the development of IoTs. Single-board credit-card sized
Raspberry Pi or similar single-board computers running a full
blown operating system like Linux and with WiFi capability
has made IoT development a lot easier. This is because of
simpler scripting based software that makes an app
development a breeze. One has to keep in mind that running
a full operating system (OS) does not come without some
security risks and overheads. The OS and associated libraries
need to be patched, and these single board computers have a
much larger attack surface than a simple microcontroller.

In this paper, we outline the changes to the EENG3288
course at our college by making judicial changes to the
curriculum, introducing new laboratory equipment and
developing new labs to circumvent several issues discussed
above. We also discuss the introduction of the Project Based
Learning (PBL) paradigm [5] in this course update process.
Other colleges can readily adapt these concepts with minor
changes.

The current ten specific outcomes of the course include
EAC-ABET and ETAC-ABET student outcomes. With the
re-design of the course, we will add the following intended
student learning outcomes.

Outcome 5.1: Design and program using a second
development system based on a current generation 32-b
microcontroller and a modern scripting language, e.g.,
MicroPython.

Outcome 5.2: Use MicroPython for pin level programming
to control a display subsystem.

Outcome 5.3: Develop a timer based display controller
system.

Outcome 5.4: Gather sensor data, encrypt, and transmit
over a network.

Outcome 6.1: Pursue team design projects (PBL), as
specified, extending the knowledge gained from lab
projects.

II. DESIGN OF THE COURSE CONTENTS
Both Electrical Engineering and Electrical Engineering

Technology majors take the EENG3288 Microprocessor
System Design II course. A majority of them complete two
programming courses prior to taking this course, namely,
ENGR1204 Programming Languages in Engineering and
ENGR3200 Advanced Engineering Programming. Students
learn solving engineering problems in the ENGR1204 course
using MATLAB scripting language. In ENGR3200, the
students learn, using the compiled language C++, to solve
engineering problems. Apart from procedural programming
in ENGR3200, they get introduced to the object-oriented
programming, exception handling, and input data validation.
These students join the EENG3288 class with some basic
concepts of secure software development using C++. In
EENG3288, the students develop C code on CodeWarrior
and download the executable onto the flash ROM of Dragon
12-Plus for execution.

A. Introducing a Second Platform – pyboard into
EENG3288
As discussed earlier, introduction of a second

development platform in EENG3288 is highly desirable and
will help satisfy the intended Outcomes 5.1 through 5.4.

Based on our experience in developing labs for a graduate
course, EENG7709 Embedded Systems [6], we chose to
introduce a Python-based microcontroller development
system, namely pyboard, in the undergraduate EENG3288
course. Although EENG7709 uses Raspberry Pi single-board
computer based labs, the Raspberry Pi appears to be a rather
complex platform for simple I/O pin level programming,
sensor data gathering, and sensor data transmission used in
the undergraduate EENG3288 course. Since applications
developed for Raspberry Pi run under the Linux OS, the
system and power overheads are larger than those on the
pyboard. MicroPython runs bare-metal on the pyboard, and
essentially provides a Python operating system. The built-in
pyb module contains functions and classes to control the
peripherals available on the board, such as UART, I2C, SPI,
ADC and DAC. It connects to the PC over USB, giving a
USB flash drive to save MicroPython scripts, and a serial
Python prompt (a REPL) for instant programming. This
allows anyone to instantly type and execute MicroPython
commands, just as one would when running Python on the
PC.

https://www.arduino.cc/
https://opensource.com/article/17/2/internet-microcontroller-board-esp8266
https://opensource.com/article/17/2/internet-microcontroller-board-esp8266
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus/k-seriesperformancem4/k8x-secure:K8X-SCALABLE-SECURE-MCU
https://en.wikipedia.org/wiki/Raspberry_Pi
https://opensource.com/article/17/1/how-to-orange-pi
https://micropython.org/
https://pyboard.org/

3 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

The C-language based program development and
debugging required for the Dragon 12-Plus can be relatively
more time consuming and tedious. On the other hand,
network interfaces and most on board features on pyboard are
similar to those extended by Dragon 12-Plus, except that the
pyboard is a lot more powerful.

1) Pyboard and MicroPython
The inexpensive pyboard is a powerful microcontroller

based board with many useful features including a hardware
random number generator. MicroPython supported on the
pyboard is a subset of the Python 3 programming language
optimized to run on microcontrollers. Over the last few years,
Python has become the number 1 choice for programming
and embedded application development. MicroPython [7]
being a subset of Python allows simple tweaking to port
applications developed using Python.

The MicroPython organization provides detailed tutorials
on running the scripts over pyboard. These together with
many blogs and application notes helped in developing the
labs described later in this paper and referenced therein.

2) Integrating Python into the Undergraduate
 Curriculum

Starting Spring 2019, an introduction to Python in
addition to MATLAB scripting started in ENGR1204 as
shown in Figure 1. The following course, ENGR3200, will
introduce object oriented programming concepts of Python
starting the Fall 2019 semester. In the Spring 2020 semester,
MicroPython will be introduced in EENG3288, enabling the
Outcomes 5.1 through 5.4.

ENGR1204
Programming Languages in

Engineering
MATLAB & Python

(Starting Spring 2019)

ENGR3200
Advanced Engineering

Programming
C++ & Python

(Starting Fall 2019)

EEENG3288
Microprocessor System Design II

C & MicroPython
Dragon 12-Plus & Pyboard

(Starting Spring 2020)

Fig. 1. Introducing Python in the Undergraduate Curriculum

B. Developing New Labs on pyboard
As mentioned earlier, the pyboard was chosen to cover

Outcome 5.1. We developed the following three new labs to
cover Outcomes 5.2 through 5.4.

1. Lab 1: Seven-segment display of patterns by pin
programming

This lab uses a 4-digit 4D75 7-segment display unit with
leftmost through right digits denoted as DSP1, DSP2, DSP3,
and DSP4. The pin connections between the display device
and the pyboard are to be done properly and the pyboard pins
need to be set to the ‘out’ direction. Obviously, the displays
will turn off when a logical ‘high’ (i.e., high voltage level) is
applied to the corresponding cathode pins.

We chose to display the digit ‘9’ on DSP2 and ‘6’ on
DSP3 as shown in Figure 2. The segment pins are
multiplexed between all four devices. So we need to make
sure that the segments corresponding to the digit ‘9’ (a, b, c,
f, and g) on DSP2 and those corresponding to the digit ‘6’ (c,

d, e, f, and g) on DSP3 are refreshed at a high enough rate to
provide a steady display using the principle of “persistence
of vision”. So a delay of 8.5 ms (Python timer.sleep(.0085))
that corresponds to ~118 Hz was used.

Fig. 2. Pyboard display of ‘96’ on 7-segment displays

Script to display 9 on DSP2 & 6 on DSP3

--------------- Setup Functions ------------- #

def set_output(pinArr,pinName,pinDict):

 "Sets pins for output and stores values in a
dictionary."

 for i in range(len(pinArr)):

 pinDict[pinName[i]] = Pin(pinArr[i],pyb.Pin.OUT_PP)

Three setup functions are needed to declare specific
pyboard pin direction as output (set output), turning all
displays off (seg7_off) and turning a digit display on one of
the display device (seg7_disp). All of them use the dictionary
feature of Python to save and retrieve Pin, Segment, and Digit
information. One of the setup functions is listed above for
reference.

The overall digit ‘96’ display script is straightforward and
is available from the author upon request.

In the lab, we will ask students to run the supplied
program. After familiarization, they will be asked to modify
it to display different digits on the four 7-segment displays.
We can also assign more complicated displays including
changing patterns without changing any connectivity.

2. Lab 2: Timer cycle based traffic light controller
This lab involves cycling through three external LEDs

lighting in the sequence: RED -> RED -> RED -> RED. This
is followed by the GREEN -> GREEN -> GREEN ->
GREEN sequence. It is followed by YELLOW. Each LED
stays ON for a specified interval.

The MicroPython script involves declaring a
“Semaforo(object)” class in which the initialization of the
displays and the timers and an interrupt service routine need
to be defined. Following this, the main program starts by

4 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

turning on one of the displays followed by instantiating the
previously declared “Semaforo()” class. Figure 3 shows the
hardware interconnection for this lab.

Fig. 3. Pyboard with external LEDs for Traffic Light Controller design

Within a class declaration of “Semaforo(object)”, an
initialization function called “_init_” needs to be defined.
Apart from initializing the LED devices counter called
“count”, a timer cycle counter called “cyclecount” also needs
to be initialized to zero. A timer object has to be initialized as
Timer 2 to have a frequency close to 1 Hz. By passing the
parameter values of prescaler=10 and period=10000000, the
timer will trigger interrupts at the 84 MHz / 10 / 10000001 ~
0.84 Hz rate. An interrupt service routine called “signal” has
to be used for timer callback. So the top part of the
MicroPython code reads as follows:
Timer Based Simple Traffic Light Controller

Assuming both RED & GREEN LEDs stay ON 4 times as long
as YELLOW

import pyb, micropython

micropython.alloc_emergency_exception_buf(100)

class Semaforo(object):

 def __init__(self):

 self.led = [1,2,3,1] # R,G,Y,R

 self.count = 0 # Initialize led count

 tim = pyb.Timer(2,prescaler=10,period=10000000)

default single period

 self.cyclecount = 0 # Initialize cycle count

 tim.callback(self.signal)

Next, we need to define the interrupt service routine
“signal”. The coding is done in a long hand manner with
specific cycle counts. First, increment CYCLECOUNT.
Then check if CYCLECOUNT = 4 to turn GREEN LED ON,
else if CYCLECOUNT = 8 then turn YELLOW LED ON,
else if CYCLECOUNT = 9 then turn RED LED ON. Finally,
reset all counters to restart the cycle. The code is available
from the author by request.

The program can be started and run in a simple manner.
In the lab, students will be first running the supplied program.
After familiarization, they will be asked to modify it to turn

on varying number of LEDs in a specified sequence of
variable durations. Since there is no external control or data
transfer, security risks posed by this application is minimal.

3. Lab 3: Encrypting temperature/pressure sensor data
for porting & processing

This is the most complicated of the three labs. Here we
will only outline important aspects of this application and the
script. Actual script will be provided on request. The basic
requirement is to collect a set of temperature readings at
regular intervals, save them in a .csv file after encryption,
transmit to the PC for decrypting and displaying.

Sensor: This lab uses an external DHT-11
temperature/pressure sensor. As shown in Figure 4, Pin 1
(VCC) of the sensor is connected to 3V3, Pin 2 (DATA) is
connected to Y9, and Pin 4 (GND) is connected to GND on
the board. In order to use the DHT-11 effectively, we used
the dht library created by polygontwist on GitHub to set up
the sensor. The file “dht.py” needs to be copied to the
Pyboard for the sensor to work. Figure 4 shows the overall
interconnection of pyboard, DHT-11, and other subsystems
for this exercise.

Fig. 4. A Complete Setup for Lab 3

Real Time Clock (RTC): This clock class tracks the date
and time. To set up the RTC, datetime() function must be
used with the format (year, month, day, weekday, hour,
minute, second, millisecond). The weekday is specified by
the numbers 1-7, with Monday corresponding to 1 and
Sunday to 7. RTC is a 24-hour clock, so the hour must be
given using military time. Datetime() can also be used to get
the current date and time. The script fragment is listed below:
import pyb

import dht

dht.init() # Initialize sensor

Get values for date and time.

print('Enter numerical values for date and time.')

year,month = int(input('Year: ')), int(input('Month: '))

day,wday = int(input('Day: '))

, int(input('Weekday (1-7;Mon-Sun): '))

hour,minute = int(input('Hour (24hr/day): '))

, int(input('Minute: '))

second = int(input('Second: '))

5 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Set up RTC with given values

rtc = pyb.RTC()

rtc.datetime((year,month,day,wday,hour

 ,minute,second,0))

Write into a file – sample.csv

def dataLog():

 dt = rtc.datetime()

 T = dht.temp()

 log = open('sample.csv','a')

 log.write('{0}-{1:02d}-{2:02d}
{4:02d}:{5:02d}:{6:02d}'.format(*dt))

 log.write(', {}\n'.format(T))

 log.close()

 print(dt, T)

dataLog()

Both the time data from the RTC and temperature data
from the DHT-11 sensor are encrypted. A simple way to
implement encryption is by using the XOR Cipher. The
concept of implementation is to first define an encryption key
(say 19) and then to perform XOR operation of this key with
the characters in the String, which you want to encrypt.
key = 19

def encrypt(string):

 enc_string = ''

 for i in range(len(string)):

 num = ord(string[i])

 encNum = num^key

 encChar = chr(encNum)

 enc_string += encChar

 return enc_string

To decrypt the encrypted characters (enc_string), we have
to perform XOR operation again with the defined key.
def decrypt(enc_string):

 string = ''

 for i in range(len(enc_string)):

 num = ord(enc_string[i])

 decNum = num^key

 decChar = chr(decNum)

 string += decChar

 return string

Next a *.csv file needs to be opened in which the new
data in csv format has to be encrypted and appended. To keep
the size of this file from growing indefinitely, the earliest
encrypted data needs to be discarded from the file.

The temperature readings on a particular day from the
program is shown in Figure 5. The increase in temperature

was initiated by blowing hot air from a hair dryer onto the
DHT-11 sensor.

Fig. 5. Temperature readings from DHT-11 securely transmitted and

received

For the class assignment, variations in some of the
parameters will be specified. One of the most important one
will be to use a different encryption/decryption algorithm
discussed in the class. Also other sensors will be used to
capture pressure or other physical quantities.

III. ADDITIONAL DISCUSSION TOPICS AND
OUTCOMES TO BE COVERED IN EENG3288

The following additional discussion topics need to be
added in EENG3288 to introduce the pyboard, MicroPython
and the labs described in this paper. Within brackets, we also
indicate the KU topics and outcomes as well as NICE
Framework categories and specialty areas [8] met by the
following discussions and activities.

• Introduction to the pyboard and STM32F405RGT6
microcontroller architecture [CAE-CD EBS KU
Outcome 1, Topic 1].

• Introduction to MicroPython.

• Mechanism of turning LEDs ON by applying proper
voltages.

• Pin programming and Lab 1 [NICE Framework SA
SP.DEV].

• Python switch, callbacks, and interrupts [NICE
Framework SA SP.DEV].

• Python classes and objects [NICE Framework SA
SP.DEV].

• The Timers and timer cycle based programming and
Lab 2 [CAE-CD EBS KU Topic 5, NICE Framework
SA SP.DEV].

• Internet and Security – Data encryption, decryption
and Lab 3 [EBS KU Topic 9, HFS KU Topic 6b,
NICE Framework SA OM.DTA].

In order to satisfy the requirement specified in Outcome
6.1, we will assign multiple projects to multiple teams of
three students. The projects will conform to the PBL
approach and be assigned at the mid-point of the course to

http://docs.micropython.org/en/latest/pyboard/tutorial/index.html

6 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

enhance student-learning outcomes. We will divide each
project into three sub-projects so that each student in a team
can complete a sub-project and integrate the project. Many
projects are listed at the end of each chapter of [2]. The
instructor will specify the projects based upon these and other
resources.

IV. CONCLUSION
This paper presents a set of new microcontroller

laboratory exercises based upon scripting in MicroPython
and using a credit card sized pyboard platform. These
exercises were developed to fulfill three shortcomings in our
current course: (a) enhance student learning by introducing a
second hardware platform and its corresponding IDE; (b)
enhance student programming experience through scripting
in one of the emerging language, namely, Python; and (c)
develop “security mindset” among developers of Internet of
Things (IoT) apps on microcontrollers. We understand that
all these additional activities may become overwhelming for
some students. Therefore, we envisage adopting proposed
enhancements in steps. For example, we already introduced
learning elements of the Python language in the two
preceding programming language courses. We will continue
introducing other enhancements in due course. We will
continue to assess the proposed new outcomes and plan to
present those results to our peers. In this paper, we outlined
three lab exercises using this pyboard platform and other
hands-on lab exercise developments are underway. We have
uploaded all the developed labs to the Cybersecurity Library
- CLARK platform (www.clark.center) per NSA grant
requirements. In future, all details including the program files
will be available for download by the educators. We foresee
Python based application development to become more
prevalent in future and instructors from different colleges are
welcome to use our lab exercises readily in their courses.

REFERENCES
[1] K. Mondal, “Teaching an embedded system course to electrical

engineering and technology students”, Proc. ASEE Mid-Atlantic
Symposium, Farmingdale State Univ, NY, 2011.

[2] H. Hwang, The HCS12/9S12 – An Introduction to Software and
Hardware Interfacing. 2nd Edition. Delmar Cengage Learning, NY,
2010.

[3] R. Haskell and D. Hanna, Learning by Example Using C
Programming the Dragon 12-Plus Using CodeWarrior. LBE Books,
MI, 2008.

[4] F. Salewski, D. Wilking, and S. Kowalewski: “Diverse hardware
platforms in embedded systems lab courses: A way to teach the
differences”, ACM SIGBED Review vol. 2, no. 4, pp. 70-74, 2005.

[5] M. Rodriguez-Sanchez, A. Torrado-Carvajal, J. Vaquero, S.
Borromeo, and J. Hernandez-Tamames, “An Embedded Systems
Course for Engineering Students Using Open-Source Platforms in
Wireless Scenarios”, IEEE Transactions on Education, vol. 59, no.
4, pp. 248–254, 2016.

[6] A. Rao, D. Clarke, M. Bhadiyadra. and S. Phadke,.”Development of
an Embedded System Course to Teach the Internet-of-Things”,
IEEE STEM Education Conference, ISEC, Princeton, 2018, pp. 154-
160.

[7] M. Tollervey, Programming with MicroPython - Embedded
Programming with Microcontrollers and Python. O’Reilly Media,
Inc., CA, 2018.

[8] W. Newhouse, S. Keith, and G. Witte, NIST Special Publication
800-181 National Initiative for Cybersecurity Education (NICE)
Cybersecurity Workforce Framework. US Department of
Commerce, 2017.

http://www.clark.center/

	Introducing Secure Design by Scripting in an Undergraduate Microcontroller Based Design Course
	I. Introduction
	II. Design of the Course Contents
	A. Introducing a Second Platform – pyboard into EENG3288
	1) Pyboard and MicroPython
	2) Integrating Python into the Undergraduate Curriculum

	B. Developing New Labs on pyboard
	1. Lab 1: Seven-segment display of patterns by pin programming
	2. Lab 2: Timer cycle based traffic light controller
	3. Lab 3: Encrypting temperature/pressure sensor data for porting & processing

	III. Additional Discussion Topics and Outcomes to be Covered in EENG3288
	IV. Conclusion
	References

