

1 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

A Laboratory for Hands-on
Cyber Threat Hunting Education

Jinpeng Wei

Department of Software and
Information Systems

 University of North Carolina at
Charlotte

Charlotte, NC, USA
jwei8@uncc.edu

Bei-Tseng “Bill” Chu
Department of Software and

Information Systems
 University of North Carolina at

Charlotte
Charlotte, NC, USA
billchu@uncc.edu

Deanne Cranford-Wesley
Davis iTEC Cyber Security

Center
Forsyth Technical Community

College
Winston-Salem, NC, USA
dwesley@forsythtech.edu

James Brown
Davis iTEC Cyber Security

Center
Forsyth Technical Community

College
Winston-Salem, NC, USA
jbrown@forsythtech.edu

Abstract—Cyber threat hunting has emerged as a critical
part of cyber security practice. However, there is a severe
shortage of cybersecurity professionals with advanced analysis
skills for cyber threat hunting. Sponsored by NSA, the
University of North Carolina at Charlotte (UNC Charlotte)
and Forsyth Technical Community College (Forsyth Tech)
have been developing freely-available, hands-on teaching
materials for cyber threat hunting suitable for use in two-year
community college curriculum, 4-year universities curriculum,
as well as for collegiate threat hunting competitions. Our
hands-on labs focus on exercising a set of essential technical
skills (called the threat hunting skill set) in an enterprise
environment and they are modeled after real-world scenarios.
Our lab environment contains real threats (e.g., malware)
against real software (e.g., Operating Systems and
applications), and real security datasets. These labs are
designed to help a student learn how to detect active and
dormant malware, analyze its activities, and assess its impact.
These labs also teach a student how to search and probe for
anomalies in a variety of datasets using multiple analytical
skills, such as statistical analysis. In this paper, we present the
design and implementation of our hands-on labs.

Keywords—cyber hunting, hands-on labs, malware analysis,
security data analytics, virtualization, Nice Framework, Nice
categories, cyber defense

I. INTRODUCTION
Cyber threat hunting has emerged as a critical part of

cyber security practice [1][2][3][7][8][9][11][13][17]. For
example, in a survey of 494 IT professionals by SANS
Institute, 86% of respondents are interested in threat hunting;
about 75% said more aggressive threat hunting had reduced
their attack surface; however, more than 40% do not have a
formal threat hunting program in place [13]. Threat hunting
has gained a lot of attention in the community, for example,
it was extensively discussed at RSA Conference [14] and
InfoSecurity Magazine [15]. There are cyber threat hunting
training materials in industry [10] (e.g., SANS Institute [4][5]
and Focal Point [16]) but they are expensive and have limited
coverage. In academia, one prominent example of free hands-
on labs for security education is SEED [12][18]. However,
SEED does not cover cyber threat hunting. We use these
existing projects and their practices as great examples for us

to learn from when we build teaching materials in the area of
Threat Hunting in this project.

Colleges and universities have not yet focused on
developing threat hunting education material to prepare
students for this important area. Threat hunting differs from
many traditional cyber security activities such as cyber
defense, penetration testing, and forensics. It is a highly
unstructured task that demands deep technical know-how,
data analytics savvy, and out of the box thinking [20]. Efforts
in defining cyber security knowledge units, e.g. NICE and
NSA/DHS CAE-CD, have identified basic cyber security
skills. However, cyber threat hunting requires students to
develop analytical skills that integrates/synthesizes basic
cyber security skills. We envision that labs developed can be
used in a variety of ways in a typical cyber security
curriculum. Some labs can be used as capstone projects in
traditional security courses such as introduction to
information security, network security, and computer
forensics. Other labs may be used in a cyber threat hunting
class or used in competitions.

Like many other sectors, automation using Artificial
Intelligence is impacting the cyber security industry. System
administration jobs are being reduced by automated
management tools. Security orchestration and workflow
automation is also reducing the need for human intervention
in cyber defense. At the same time, there is increased demand
for cybersecurity professionals with more advanced analysis
skills. Cyber threat hunting is an example of advanced
analysis skills in great demand.

Our hands-on labs focus on exercising a set of essential
technical skills (called the threat hunting skill set, detailed in
Section II.A) in an enterprise environment and they are
modeled after real-world scenarios. Our lab environment
contains real threats (e.g., malware) against real software
(e.g., Operating Systems and applications), and real security
datasets. These labs are designed to help a student learn how
to detect active and dormant malware, analyze its activities,
and assess its impact. Moreover, these labs teach a student
how to search and probe for anomalies in a variety of datasets
using multiple analytical skills, such as statistical analysis,
machine learning, and data visualization. Our labs are
designed at different difficulty levels suitable for use by two-

This work is supported by National Security Agency through grant
number H98230-17-1-0354.

mailto:jwei8@uncc.edu
mailto:billchu@uncc.edu
mailto:dwesley@forsythtech.edu
mailto:jbrown@forsythtech.edu

2 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

year community college students, 4-year university students,
as well as for collegiate threat hunting competitions.

In terms of research method, we first identify the set of
technical skills necessary for threat hunting by surveying
related work (in both industry and academia) and considering
CAE-C Knowledge Units (KUs), next we design, build, and
test hands-on labs that cover these technical skills at different
difficulty levels (guided by Bloom’s Taxonomy [22]).
Finally, we evaluate the effectiveness of our labs by
collecting feedback from users.

The rest of this paper is organized as follows. Section II
presents the design of our hand-on labs, including the threat
hunting skill set, threat detection and analysis labs, and
security data analytics labs. Section III describes the
virtualization based implementation of our hands-on labs.
Section IV discusses the current status of our project and
possible future work, and Section V concludes the paper.

II. DESIGN OF THE THREAT HUNTING LABS

A. The Threat Hunting Skill Set
In general, successful threat hunting requires several

technical skills shown in Fig. 1. Threat hunting is often
triggered by either an internal incident (e.g., a warning
generated by the IDS) or external threat intelligence (e.g.,
report about a new threat actor, such as WannaCry). Security
incidents are important indicators of potential threats.
Therefore, incident analysis is an important first step in
effective threat hunting. Similarly, a threat hunter must know
how to assess threat intelligence information from the
community. The hunting for potential threats relies on
analysis of security related data, such as event logs, DNS
requests, and packet captures. For threats that can either
modify security log data or attack security tools directly,
memory forensics is an alternative way to locate malware.
Once malware is identified, a threat hunter must analyze the
malware in order to understand its history, impact, and
capabilities (i.e., what it can potentially do in the future). Our
hands-on exercises cover as many such skills as possible, and
we give priority to the skills at the top of the list.

Incident detection and analysis

Threat intelligence

Security data analysis

Forensic analysis

Malicious code analysis

Analytical models

Penetration testing

Vulnerability analysis

Fig. 1. Threat Hunting Skill Set (Ordered by Priority)

B. Challenges and Design Decisions
The central challenge of our lab design is how to

construct representative threat scenarios suitable for training.
For example, what should be our criteria of choosing
malware samples? How much security data should be used in
data analytics exercises so that the data does not tell a toy
story yet time required to finish the hands-on labs is
reasonable?

We have to find the balance between relevance and
safety: on one hand, the malware used should represent the
state of the art in offensive technologies; on the other hand,
this malware must be under control during the lab exercises,
so that studying it does not accidentally cause damage. We
use the following strategies: (1) employ virtual machines
(VMs) to run the malware so that we can avoid damaging the
local system (i.e., the malware does not run in a real computer
with actual user data); (2) isolate the lab VM from the campus
network, so that the malware cannot attack and propagate to
the campus network; (3) give the lab VM limited networking
capabilities: network access is often necessary to observe the
malware’s interesting behaviors, however, it can also enable
the malware to cause damage (e.g., attacking real hosts on the
Internet). Therefore, we use fake DNS servers and network
service simulators to give the malware an illusion that it can
access the Internet to accomplish its missions. There may still
be trade-offs if some malware requires an external C&C
server but we cannot perfectly simulate the C&C server. In
general, there are a few well-understood challenges in
malware analysis, such as obfuscation, anti-debugging, and
anti-virtualization, that demand more research. However,
they are out of the scope of this paper.

We also strike a balance between relevance and
feasibility. For example, there exist publicly available
security datasets such as the Sandia Dataset [19] that are
collected from real computer networks. However, directly
using such datasets in a hands-on lab may not be feasible
because such datasets are too complicated for a student to
analyze in a few weeks, for example, the Sandia Dataset
includes more than one billion network events. Therefore, we
must use a trimmed down version of the original dataset so
that analyzing it becomes doable in a student project.

If we do not find the right balances discussed above,
either students are not able to learn the state-of-the-art of
cyber threats, or they do learn but at the risk of spreading
malware. Furthermore, if the labs take too much of the
students’ time, some may be frustrated and give up. On the
other hand, if the labs are too easy, the students will not be
sufficiently challenged. To minimize such risks, our solution
incorporates virtualization-based lab technology that
represents the state of the art in threat analysis; we also make
our labs customizable in terms of the amount of security data,
so that we can revise the labs based on students’ feedback.

3 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

C. Threat Detection and Analysis

1) Brief Introduction
Our labs in this topic area help a student learn how to

detect active and dormant malware (either on disk or in
memory), analyze its activities, assess its impact, and
minimize its damage. They cover a skill set that includes
incident detection, malicious code analysis, memory forensic
analysis, and security data analysis. These skills can be
mapped to the following CAE-C Knowledge Units: Digital
Forensics, Network Forensics, Software Security Analysis,
and Software Reverse Engineering, and the CAE
classification can be Protect and Defend.

2) Hands-on Assignment
We create hands-on exercises that represent real-world

threat scenarios in an enterprise environment. Each hands-on
exercise covers a set of threat hunting skills that are needed
to deal with a representative malware. The exercise is created
by installing representative malware into a lab environment
(i.e., a virtual machine). A student uses the lab virtual
machine as the starting point of investigation, and his or her
task is to uncover what has happened and submit a detailed
report, without any knowledge of the particular malware
installed in the exercise. From each exercise, the student is
expected to employ a set of skills to “solve the puzzle”.

Our virtualization-based lab design is a viable solution
because we have used the same technology in our recent
teaching at UNC Charlotte (e.g., in a course ITIS 6330/8330
Malware Analysis).

As an illustration, a student may use Process Explorer to
inspect all running processes. If he/she recognizes a
suspicious process from its name, he/she can find out the
corresponding executable file on disk and perform static
analysis; he/she may also perform dynamic analysis on a
suspicious process. Lab T1 in Table I provides an example of
this kind of easy projects. There are multiple static analysis
tools available, such as PEiD that can detect whether an
executable file is packed, Dependency Walker that can show
all imported functions by the executable file, CFF Explorer
that can show all parts of the executable file, and IDA that
can disassemble the executable file. There are also multiple
dynamic analysis tools, such as OllyDbg and Windbg that
can debug the suspicious process at instruction level, Process
Monitor that can monitor all library calls (e.g., Win32 APIs)
made by the suspicious process, Process Explorer that can
show many runtime attributes of the suspicious process (such
as strings in memory, DLLs loaded, and objects created),
Regshot that can detect any changes to the Windows Registry
during malware execution, ApateDNS that can catch all DNS
requests from the suspicious process, and Wireshark that can
capture all network packets. We install all these analysis tools
in the lab environment to make them readily available to the
student.

The above scenario represents an easy case for
identifying malware execution (i.e., malware does not
obscure its process name). In reality, there will be harder

cases that require different approaches for detection. For
example, the full path of malware executable can be
detected if it uses the registry key

HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVersion\Run

to achieve persistence. As another example, a malware that
runs as a service may be detected if the service has a
suspicious description or the DLL that implements the
service has a suspicious name. We develop exercises that
expose different scenarios to the student. Lab T2 in Table 1
provides a concrete example project with medium difficulty
level.

Even stealthier malware (such as Lab T3 in Table I) can
hide malicious files/processes/network connections from
user-level investigation tools such as Process Explorer. In
that case, a student may analyze the memory in order to
detect hidden objects. For example, the student can use
Windbg to uncover hidden malicious processes, hidden
network connections, hidden DLLs, hidden malicious
services, hidden device drivers (kernel modules), and
malicious code injected into benign processes (e.g., through
process hollowing). This method is especially useful for
detecting malware’s kernel-level activities, such as hooking
of the System Service Descriptor Table (SSDT) and
legitimate device drivers’ IRP function tables.

TABLE I. EXAMPLE LABS IN THREAT DETECTION AND ANALYSIS

Lab
Name

Difficulty
Level Description

Lab T1 Low

We install a malware file ocl.exe (MD5:
251f4d0caf6eadae4534 88f9c9c0ea95) in
the lab VM. Using Task Manager, a student
can see a process named ocl.exe, then she
can use Process Explorer to locate the
executable file on the disk. Next, she can
use ApateDNS to see that the malware
connects to an external server every 30
seconds. Using Wireshark, she can know
that the malware tries to connect to port
9999, and if she runs Netcat on an external
host listening on port 9999 and configures
ApateDNS accordingly, she can see that the
malware starts a reverse shell once the
connection is successful.

Lab T2 Medium

We install a keylogger (MD5:
24ce99418862cb0c04e46fba24 5596ab) in
the lab VM. This malware disguises itself
under an innocuous name javaw.exe,
records keystrokes and saves them in a file,
persists over reboot, contacts a C&C server
at total-updates.com, and acts upon several
commands (such as “Update”, “Upload
KeyLogs”). A student can use multiple
analysis tools such as ApateDNS,
Wireshark, System Monitor, Process
Explorer, Process Monitor, and OllyDbg to
discover and analyze this malware. The
student also can write a Python program to

http://www.uncc-cyber-huntingforfun.com/

4 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Lab
Name

Difficulty
Level Description

simulate the C&C server. Further details of
the analysis steps are shown in Table II.

Lab T3 High

We install one worm (MD5:
a230a1bd2a8446e5d0a91e7dde44 c29f)
from the Storm family to prepare the lab
VM. This worm employs rootkit technology
to hide malicious files, registry entries, and
processes. A student can use Windbg to
analyze the memory of the given VM. She
needs to detect the modifications of two
entries in the SSDT (NtQueryDirectoryFile
and NtEnumerateValueKey) by the malware
and discover the logic of the rootkit (e.g.,
what kind of files and registry entries it
hides). She also needs to find the malicious
device driver file and analyze it (using IDA
and Windbg) to discover more details of the
malware, such as which processes are
running stealthily and which security
products the malware tries to prevent from
running.

TABLE II. ANALYSIS STEPS FOR LAB T2

Tool Student Action Observation

Process
Explorer

Inspect process
names

No process with a suspicious
name

ApateDNS Configure the tool to
resolve any domain
name to the host’s IP
address

Periodic requests for domain
total-updates.com

Wireshark Capture traffic Periodic TCP SYN packets to
the host’s IP address on port
80, without TCP SYN-ACK
packets from the host

Netcat on the
host

Listen on port 80 A HTTP POST message is
received, which includes the
username, hostname, and
group name of the analysis
VM

System
Monitor
(sysmon)

Enable network
monitoring

One process makes a network
connection to the host IP
address on port 80, and the
process name is javaw.exe

Process
Explorer

Find the start location
of javaw.exe

At the location there is
another file named Log.txt,
and its content is logged
keystrokes, such as “dir
[enter]”

Process
Monitor
(procmon)

Trace the API calls
made by javaw.exe

Confirm that javaw.exe
invokes WriteFile (“Log.txt”)

Tool Student Action Observation

OllyDbg Attach to javaw.exe,
set breakpoint at
WriteFile, and use
the call stack to
locate malware code
that makes such calls

Confirm how javaw.exe logs
keystrokes and saves them in
Log.txt

OllyDbg Set breakpoint at
InternetOpenA and
use the call stack to
figure out where in
the malware such
APIs are invoked

Confirm how javaw.exe
contacts the host at port 80
and how the reply from the
host affects its execution, and
find out the commands that
the malware understands, such
as “Update”, “Upload
KeyLogs”

Python
scripts on the
host

Develop a Python
based web server that
responds with
“Update”, “Upload
KeyLogs”, etc

Confirm that when the server
replies “Upload KeyLogs”,
the malware sends encoded
content of Log.txt. Confirm
effects of other commands

The student can also perform event log analysis to hunt

for malware, such as tracking malware installations,
recognizing suspicious services, and finding evidence of
malware execution. A student can first apply regular
expression based filtering of event logs to reduce the amount
of entries to be inspected, and then use heuristics to identify
suspicious processes (such as a common system process
name that is misspelled) and intrusions (such as many crashes
of Adobe Reader and alerts from anti-virus). Next, the
student can apply more advanced techniques such as timeline
analysis and data visualization to recognize higher level
malware semantics such as cyber kill chain phases (e.g.,
lateral movement) through patterns of events. The second
area of our project focuses on the training of Security Data
Analytics skills (see Section II.D).

3) Assessment
The student needs to submit a report of discoveries for

each lab. The report is graded based on the completeness and
clarity of the submission. In terms of completeness, the
reported findings are checked against the ground truth, i.e.,
how far it is towards detecting and understanding the
malware used to create the exercise. A typical report would
cover (1) when (and how) the breach occurred, (2) rogue
processes, application code injections, or persistent rootkits
involved, and (3) activity, impact and capability of malware
involved. In terms of clarity, the report must mention the
tools/methods that are used in the hunting to glean each piece
of discovered information. Depending on the nature of the
exercise, the report can be centered around a few questions
given in the exercise. Each lab exercise will have detailed
rubrics for grading.

If the lab exercise is used in a competition, then the time
that a student uses to work out the solution can also be a
grading factor.

http://www.uncc-cyber-huntingforfun.com/

5 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

D. Security Data Analytics

a) Brief Introduction
Successful cyber threat hunting takes cyber threat

intelligence, various logs, packet captures, and alerts from
traditional IDS/IPS and firewalls as input to find threats and
anomalies within the organization’s networks and systems.
Therefore, the ability to analyze security-related data is
essential for cyber threat hunting. Our security data analytics
labs cover sets of analytical skills to search and probe for
anomalies in a variety of datasets, such as basic search,
statistical analysis, aggregation, machine learning, data
mining, and data visualization.

4) Hands-on Learning Assignment
We give students a number of log data sets with a

description of the problem scenario. We also give them the
necessary data analysis tools. They are expected to analyze
log data to detect malicious activities in the system.

Depending on the difficulty levels of the assignments, we
may provide additional information in the lab. For example,
we can directly give the baseline profile of a system (i.e.,
when there are no intrusions), so the students can skip the
step that learns the baseline profile.

Example scenario. As an illustration of our design of the
lab exercises, we use the following scenario. C0mp@ny is a
medium sized company with its headquarter located in
Charlotte, North Carolina, USA. It has its offshore offices in
Paris, London and Luxembourg. The Charlotte office
employs around 100 employees. The company has four
departments: Human Resource (HR), Research, Information
Technology (IT), and Finance. On every work-day each
employee logs onto their office machine. Employees can log
on to their account either from home or office using the
proper credentials and a secure connection. They can access
documents shared with them or documents they have been
given authorized access. They can use devices (e.g., printer,
fax, and telephone) and other company resources available to
them. After working hours, they need to log out of the
machines. The system keeps the logs of login/logout times,
actions performed, accessed devices, and GPS coordinates
from where the employee is logged on. A small snapshot of
the system log data is shown in Fig. 2. Every entry contains
the date, time-stamp, employee ID, employee nickname,
action, resource, IP, location latitude, location longitude and
the operation status. This kind of log data will be given to the
lab participants.

Fig. 2. A Snapshot of the System Log File

Example Lab S1: detect anomalies regarding access time.
Difficulty level: Low. The focus of this lab is access time
(i.e., the period when an employee logs into the system).
Students will analyze the employee activity log to detect

incidents in which a previous employee tries to access
company resources after he/she has left the company. The
students are given an employee detail table (which indicates
the starting and ending dates of each employee) and system
log data such as the one in Fig. 2. The student is expected to
write programs (e.g., in Python) to detect the anomaly and
this lab provides the programming environment for Python
and any other needed programming languages.

Example Lab S2: detect access location anomaly.
Difficulty level: Medium/High. In this lab, students identify
anomalous login locations from the given dataset. An
employee can log in from within a radius of 10 miles from
home or office in the headquarter (HQ), Paris, London, or
Luxembourg; any other login locations are suspicious. This
exercise gives the student system log data such as the one in
Fig. 2, together with employee information (such as name,
home address, office location, and typical routine). Students
are expected to use tools like Google Maps to generate a map
of access attempts using the GPS Coordinates in the log, add
office locations and employees’ home locations on the map,
and finally search for any access attempts that deviate from
the norm for the individual. In our example scenario, an
access from Eastern Asia should be detected as abnormal,
assuming that no employee lives in or travels to that area.
Since the amount of data could be large (with tens of
thousands of log entries), the student is expected to write a
program using the Google Maps API in order to automate the
data handling and anomaly detection.

5) Datasets for the Learning Assignments
In order for the Data Analytics labs to be meaningful, we

must have realistic security data. We develop tools that
generate security related data (such as access logs) based on
different data models. For example, we generated the system
log entries in Fig. 2 based on the example scenario about
C0mp@ny, such as the number of employees and the branch
offices; specifically, when generating the locations (office or
home) from which an employee accesses the company
network, we model the probability distribution of “working
from home” as the Normal distribution with mean 0.5 and
standard deviation 0.287. More details of our data generation
process can be found in [20].

6) Assessment
Students need to submit a report of discoveries. The

report is graded based on the completeness and clarity of the
submission. In terms of completeness, the reported findings
is checked against the ground truth, i.e., how far it is towards
detecting and understanding the anomaly or attack(s)
reflected in the given security data. A typical report would
cover (1) efforts to validate data to ensure only reliable data
is used in the analysis, (2) when the anomaly or attack(s)
occurred, (3) the evidence for an anomaly, (4) rogue
processes or other attack artifacts generated, if applicable,
and (5) activity and impact of the attack(s), if applicable. In
terms of clarity, the report must mention the tools/methods
that are used in the hunting to glean each piece of discovered
information. Depending on the nature of the exercise, the

6 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

report can be centered around a few questions given in the
exercise. Each lab exercise has detailed rubrics for grading.

If the lab exercise is used in a competition, then the time
that a student uses to work out the solution can also be a
grading factor.

III. IMPLEMENTATION OF THE THREAT HUNTING LABS
We build and host hands-on labs on two dedicated

servers, and these labs can be remotely accessed from inside
a browser1. The dedicated servers are virtualized using
VMWare, and each hands-on lab environment is contained in
one virtual machine (VM). Each of our servers can host about
ten lab environments (VMs), which means that each server
can support ten students at once. Each lab environment is
based on Ubuntu, which in turn uses VirtualBox to run
different labs. Each lab environment also runs a FastX web
server to support remote desktop access from inside a
browser. We use LDAP to centrally manage user accounts
among the lab environments. Since our dedicated servers are
connected to the campus network, we configure firewall
policies to ensure that these servers are logically isolated
from the rest of the campus network. The lab VMs have
private IP addresses, so they cannot be directly reached from
the Internet; we use a Nginx proxy (which has a public IP
address) in front of them to allow remote access to the lab
VMs. A more detailed diagram of our lab environment is
shown in Fig. 3.

Fig. 3. The Topology of Our Lab Environment

Moreover, we provide a web portal1 that allows
participating students to request access to our labs. Upon
receiving access requests, we create accounts for the students
after a vetting process. Next a student can login to our lab
environment from his/her browser. Once this is done, he/she
can view the list of available labs, read lab manuals, and
launch the labs on top of VirtualBox to finish the exercises.
We set up the environment for each lab, including restoring
the states of required virtual machines and configuring the
network to interconnect the virtual machines. We also need
to address lab time scheduling issues among students because
our server can run only a limited number of lab VMs
concurrently. We solve this problem by expiring each student
account within a reasonable period that is long enough for the
student to finish the lab exercise.

Each lab exercise is packaged in one or more VirtualBox
virtual machines that (1) mimic the IT environment to be
analyzed, and (2) have common analysis and development
tools installed. Note that these virtual machines are nested
VMs inside VMWare VMs, and they are the core of our
online laboratory.

More specifically, the lab virtual machines (VirtualBox
VMs) contain security analysis tools such as debuggers (e.g.,
OllyDbg and Windbg), disassemblers (e.g., IDA), basic static
analysis tools (e.g., CFF Explorer, Dependency Walker,
PEiD, PEview, UPX, Resource Hacker), basic dynamic
analysis tools (e.g., Process Monitor, Process Explorer,
Regshot, WinObj Object Manager, ApateDNS, Netcat,
iNetSim, and NtTrace), packet sniffers (e.g., Wireshark),
Sysinternals, and the ELK stack (Elasticsearch, Logstash,
Kibana) for log data analysis [6].

The lab virtual machines also contain programming tools
or environments such as gcc, Visual Studio, and NetBeans.
Each tool is installed together with the operating system that
it depends on. For example, if the lab requires iNetSim [21]
that runs only in a Linux environment and more
programming is needed then gcc can be installed in the same
virtual machine for students who prefer to write C code. We
avoid using commercial IDEs.

We prepare a student manual for each lab, which includes
(1) description of the lab exercise and necessary background
information for the lab, such as system configuration and the
security policy; and (2) questions for the student to answer.
We also provide an instructor manual for each lab, which
includes the ground truth, answers to the lab questions and
instructions with screenshots to follow in order to obtain
those answers. Depending on the purpose of using the lab
(e.g., course assignment or competition), the solution can be
used differently. For example, when the lab is used as an
assignment, the instructor can give a grade based on the
student’s answers to the lab questions, and the solution can
be used by the student as a learning guide. When the lab is
used in a competition, the student will need to write a lab
report in addition to answering the questions, and the grading
is based not only on the answers but also on how close the
report is to the ground truth.

IV. STATUS OF THE PROJECT AND FUTURE WORK
We have created six labs and they are in the beta testing

phase. Some labs (e.g., the Security Data Analytics labs) have
been used internally in our classroom teaching, while others
are to be evaluated. We plan to evaluate this project from the
following aspects:

First, we plan to evaluate the quality of our course
material design, such as whether the labs cover essential
skills in threat hunting and whether the labs have appropriate
difficulty levels. We will seek feedback from colleagues both
inside and outside our universities and external experts in
member companies of our NSF funded Industry-University
Cooperative Research Center (IUCRC) in Configuration
Analytics and Automation.

1 The URL to our cyber hunting labs is
https://sites.google.com/uncc.edu/cyberthreathunting/home

https://sites.google.com/uncc.edu/cyberthreathunting/home

7 Journal of The Colloquium for Information Systems Security Education, Volume 7, No. 1, Summer 2020

979-8-6425-4896-7/20/$26.00 ©2020 CISSE

Second, we will collect data on student learning
outcomes. We plan to introduce the labs into existing courses
and collect feedback from (1) students and faculty in our
current programs in two participating institutions (UNC
Charlotte and Forsyth Technical Community College), (2)
students and faculty in other institutions (e.g., Purdue
University and University of Tennessee at Chattanooga) who
are interested in using our labs, and (3) cyber security
professionals. We will use the students’ performance data to
evaluate the labs. For example, how easy or hard for the
students to follow the lab instructions, how much the labs
reinforced the knowledge taught in the classrooms, and how
much the labs increase the students’ knowledge and
awareness of threat hunting.

V. CONCLUSION
We have described the design and implementation of

freely-available, hands-on labs for cyber threat hunting
education, built by the University of North Carolina at
Charlotte and Forsyth Technical Community College.
Commercial training materials for cyber threat hunting are
expensive and thus not accessible to the general student
population. Through our educational labs, we aim to help
alleviate the severe shortage of cybersecurity professionals
with advanced analysis skills for cyber threat hunting.

REFERENCES
[1] https://community.hpe.com/t5/Protect-Your-Assets/Staffing-a-

successful-cyber-threat-hunting-team-Part-1-Cyber/ba-
p/6915902#.WK2ulfiJFaQ. Detailed white paper link:
https://www.hpe.com/h20195/v2/GetPDF.aspx/4AA6-8216ENN.pdf

[2] https://community.hpe.com/t5/Protect-Your-Assets/Staffing-a-
successful-cyber-threat-hunting-team-Part-2-How-cyber/ba-
p/6921509#.WK2uqfiJFaQ

[3] Staffing a successful cyber threat hunting team, Part 3: skills to look
for in a threat hunter. https://community.hpe.com/t5/Protect-Your-
Assets/Staffing-a-successful-cyber-threat-hunting-team-Part-3-
Skills-to/ba-p/6923381#.WK2uzviJFaQ

[4] SANS. Incident response and threat hunting curricula.
https://www.sans.org/curricula/incident-response-and-threat-hunting

[5] FOR508: Advanced digital forensics, incident response, and threat
hunting. SANS. https://www.sans.org/course/advanced-incident-
response-threat-hunting-training

[6] https://github.com/comperiosearch/vagrant-elk-box
[7] Tim Bandos. Seek evil, and ye shall find: a guide to cyber threat

hunting operations. https://digitalguardian.com/blog/seek-evil-and-
ye-shall-find-guide-cyber-threat-hunting-operations

[8] Introduction to threat hunting teams. Federal Virtual Training
Environment (FedVTE).

[9] https://www.infocyte.com/blog/2016/6/17/threat-hunting-fad-or-
essential-cyber-security-tactic

[10] Peter Stephenson. Threat hunting and analysis training session.
https://its.ny.gov/eiso/19th-annual-cyber-security-
conference/InteractiveTrainingSessions

[11] HPE. Hunting today - using your existing technology to hunt for
cyber threats.

[12] http://www.cis.syr.edu/~wedu/seed/
[13] Eric Cole. Threat hunting: open season on the adversary. SANS

Institute InfoSec Reading Room. https://www.sans.org/reading-
room/whitepapers/analyst/threat-hunting-open-season-adversary-
36882

[14] SANS lethal threat hunting and incident response techniques. RSA
Conference, February 2017.

[15] Destiny Bertucci. The rise of the threat hunter. InfoSecurity
Magazine, February 2017. https://www.infosecurity-
magazine.com/blogs/the-rise-of-the-threat-hunter/

[16] Data analytics training. https://focal-
point.com/services/advisors/data-analytics/data-analytics-training

[17] What is threat hunting? the emerging focus in threat detection.
https://digitalguardian.com/blog/what-threat-hunting-emerging-
focus-threat-detection. Accessed on 27th March, 2017

[18] Wenliang Du, SEED: hands-on lab exercises for computer security
education, in IEEE Security & Privacy, Vol. 9, No. 5, pp. 70-73,
Sept.-Oct. 2011. doi: 10.1109/MSP.2011.139

[19] A. D. Kent, Comprehensive, multi-source cybersecurity events, Los
Alamos National Laboratory, http://dx.doi.org/10.17021/1179829,
2015.

[20] Md Nazmus Sakib Miazi, Mir Mehedi Pritom, Mohamed Shehab,
Bill Chu and Jinpeng Wei. The design of cyber threat hunting
games: a case study, Proceedings of the 26th International
Conference on Computer Communication and Networks (ICCCN
2017), July 31-Augus 3, 2017, Vancouver, Canada.

[21] INetSim: Internet services simulation suite.
http://www.inetsim.org/requirements.html

[22] Bloom’s taxonomy. https://cft.vanderbilt.edu/guides-sub-
pages/blooms-taxonomy

	A Laboratory for Hands-on Cyber Threat Hunting Education
	I. Introduction
	II. Design of the Threat Hunting Labs
	A. The Threat Hunting Skill Set
	B. Challenges and Design Decisions
	C. Threat Detection and Analysis
	1) Brief Introduction
	2) Hands-on Assignment
	3) Assessment

	D. Security Data Analytics
	a) Brief Introduction
	4) Hands-on Learning Assignment
	5) Datasets for the Learning Assignments
	6) Assessment

	III. Implementation of the Threat Hunting Labs
	IV. Status of the Project and Future Work
	V. Conclusion
	References

